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INTRODUCTION 

The long-term goal of our research is to develop computer-aided diagnosis (CAD) techniques to 

improve the detection and diagnosis of breast cancer. The hypothesis to be tested in the present project 

is that radiologists' ability to differentiate malignant from benign breast lesions can be improved by 

integrating radiologists' perceptual expertise in the interpretation of mammograms with the advantages 

of automated computer classification. This project has 3 objectives: 

1. To combine radiologist-extracted Breast Imaging Reporting and Data System (BI-RADS) 

features with image features extracted by a computer to classify malignant and benign clustered 

microcalcifications in mammograms. 

2. To optimally combine radiologists' diagnosis with the result of computer classification. 

3. To optimize computer classification for full-field digital mammograms. 

BODY 

1.      Analysis of clinical benefits of CAD 

We analyzed data obtained in a previous observer study to find potential clinical benefits from 

CAD in addition to what has already been demonstrated [1]. In this observer study, 10 radiologists 

reviewed mammograms of 104 patients both without and with a computer aid, which was designed to 

help radiologists differentiate malignant from benign clustered microcalcifications in mammograms [2]. 

Previously, we demonstrated that this computer aid helped the radiologists to improve diagnostic 

accuracy. Specifically, the computer aid helped each of the radiologists to recommend, on average, 14% 

more biopsies for malignant lesions and 10% fewer biopsies for benign lesions [1]. In the present 

analysis, we demonstrated that this computer aid helped radiologists substantially reduce their variability 

in the interpretation of mammograms. Because of the lack of a universal metric to quantify the degree 

of variability in the interpretation of mammograms, we used two different approaches in this analysis. 

An empirical analysis is published in Radiology (reprint included with report) [3]. Part of this work was 

also presented at an annual meeting of the American Association of Physicists in Medicine (AAPM) [4] 

and the 86th Scientific Assembly and Annual Meeting of Radiological Society of North America 



(RSNA) [5]. In addition. Dr. Robert F. Wagner, who with colleagues has developed a component-of- 

variance model that can be estimated from observer study data, analyzed our observer study data and 

found the same conclusion that CAD reduced reader variability in our study (reprint included with 

report) [6]. Furthermore, we published a review article on the potential clinical benefits of breast cancer 

CAD (reprint included with report) [7]. 

2.      Comparison of BI-RADS lesion descriptors and computer-extracted image features 

We have been conducting an ongoing study to compare computer-extracted image features that 

we have developed previously [1, 2, 8] and BI-RADS lesion descriptors [9,10] for computer 

classification of breast lesions as malignant or benign. Our goal was to identify the relative strengths 

and weaknesses of these two sources of image features for computer classification and potentially 

improve the performance of computer classification by combining the image features from both sources. 

We investigate both clustered microcalcifications and masses in this study, even though we proposed in 

the original grant application to study only clustered microcalcifications. 

We have collected a database (additional images are not yet analyzed) of 67 mammograms 

containing masses (33 malignant) and 99 mammograms containing microcalcifications (42 malignant), 

with each case composed of original mammograms in the standard and magnification or spot- 

compression views. Two expert mammographers who are familiar with BI-RADS have reviewed these 

cases and provided their descriptions of the lesions and their final assessments in terms of BI-RADS. 

Analysis showed that: (1) the radiologists were more accurate at diagnosing masses than at diagnosing 

clustered microcalcifications, (2) computer classification of breast lesions as malignant or benign for 

masses tended to be more accurate based on BI-RADS lesion descriptions provided by radiologists, and 

for microcalcifications tended to be more accurate based on computer-extracted image features, and (3) 

computer classification achieved the best performance based on the combination of BI-RADS lesion 

descriptions provided by radiologists and computer-extracted image features. Part of this work has been 

presented or will be presented at the 6* International Workshop on Digital Mammography in Bremen, 

Germany (preprint included with report) [11, 12], the Department of Defense Era of Hope Breast Cancer 

Research Program Meeting [13, 14], and the 88* Scientific Assembly and Annual Meeting of the RSNA 

[15]. 



We have also been developing a method to use a computer to predict BI-RADS lesion 

descriptions that a radiologist would most likely use to describe microcalcifications in a mammogram 

and have achieved limited success. In this method, we selected a set of computer-extracted image 

features and used linear discriminante analysis (LDA) classifiers to assign a "score" to each BI-RADS 

lesion description terms. We then selected the one or two BI-RADS terms that were assigned the largest 

"scores" as the computer prediction of what a radiologist would most likely use to describe the 

microcalcifications. Our analysis showed that the concordance between the computer prediction and 

data obtained from radiologists is about the same as the concordance between two radiologists. Part of 

this work was presented at the 44* Annual Meeting of the AAPM [16]. 

3. "Optimal" combination of radiologists' and a computer's diagnostic assessment 

We have been developing a method to "optimally" combine the quantitative diagnostic 

assessments made by a radiologist and by a computer, based on a bivariate binormal model that was 

originally developed for ROC analysis [17]. This method takes into account the individual accuracy of 

the radiologist and the computer, as well as the correlation between their diagnostic assessments. 

Previously, we evaluated this method on a dataset obtained from a mammography observer study and 

found that the method produced better results than what radiologists have achieved by using the 

computer aid in an ad hoc way [18, 19]. We have now evaluated this method on a second dataset from a 

chest radiograph observer study and have found a similar conclusion that this method produced better 

results than both radiologists and the computer aid and, therefore, potentially better than what 

radiologists can achieve by using the computer aid in an ad hoc way. Part of this work was presented at 

the 87"' Scientific Assembly and Annual Meeting of the RSNA [20]. 

4. Variability of the outputs of artificial neural network 

While not proposed in our original grant application, we have started a study of the fundamental 

properties of artificial neural networks (ANNs) because ANNs are frequently used in CAD techniques as 

classifiers and they are used in the techniques that we have developed to classify breast lesions as 

malignant or benign [1, 2, 8]. We recently discovered that there is variability in the outputs from ANNs 

in an exact analogy as the uncertainties associated invariably with statistical estimates. This 

fundamental property of the ANNs either has not been recognized before or has been ignored in medical 



imaging research, where the main focus has been on the overall accuracy of a classifier. We have found 

that while one can train multiple ANNs based on a given training dataset to achieve highly similar 

overall performance (e.g., as measured by the A^ value), the outputs from these ANNs tend to be much 

more variable (by about two orders of magnitude). Therefore, such variability would logically have 

practical implications, and likely detrimental effects, on the interpretation of the ANN outputs, and 

ultimate may affect breast cancer diagnosis when CAD is used. This aspect of the ANNs should, 

therefore, be a consideration in designing CAD techniques. This work was presented at the Medical 

Image Perception Conference IX [21] and at the 44* Annual Meeting of the AAPM [22]. We have 

submitted a manuscript to IEEE Transaction on Medical Imaging [23], which will be included with our 

next report once it is published. 

5.      An empirical comparison of Student's t-test and the Dorfman-Berbaum-Metz method 

We have conducted another study not originally proposed in our grant application, to compare 

the Student's t-test and the Dorfman-Berbaum-Metz (DBM) method for comparing competing 

diagnostic modalities. Both methods are frequently used in the evaluation of CAD in observer studies. 

Theoretically, the t-test is not appropriate for such comparisons because it takes into account only the 

reader variance and ignores the case variance [24], whereas the DBM (and other similar methods) are 

more appropriate because it takes into account both the reader and the case variance [25]. Therefore, 

strictly speaking, a statistical conclusion from the t-test can be generalized to a population of readers 

being studied but only for the specific cases being studied, whereas a statistical conclusion from the 

DBM method can be generalized to a population of readers and a population of cases being studied, 

which is generally the objective of observer studies. 

We analyzed three CAD observer study datasets and compared the results of statistical analysis 

from the t-test and from the DBM method by sampling readers and cases from the larger pool of data, 

resulting in several million individual comparisons. We found that the results from the t-test and from 

the DBM method are often similar; however, they can frequently be different by a larger amount. 

Therefore, it is indeed not appropriate to use the t-test on both theoretical grounds and on the grounds of 

our empirical analysis. This work was presented at the SPIE's International Symposium: Medical 



Imaging 2002 (reprint included with report) [26]. We are preparing a manuscript to be submitted to 

Academic Radiology, and will include the manuscript in our next report once it is published. 

KEY RESEARCH ACCOMPLISHMENTS 

• Analysis of potential clinical benefits of CAD of malignant and benign breast lesions. 

• Initial comparison of BI-RADS lesion descriptors provided by radiologists and computer-extracted 

image features for computer classification of breast lesions as malignant or benign. 

• Development of a method to predict BI-RADS lesion descriptors that a radiologist would most likely 

use to describe microcalcifications in a mammogram. 

• Development of a novel method for the "optimal" combination of quantitative diagnostic assessments 

made by a radiologist and made by a computer. 

• Investigation of the variability in the outputs of artificial neural networks used in breast cancer CAD. 

• An empirical comparison of the Student's t-test and the Dorfman-Berbaum-Metz method for 

statistical comparison of competing diagnostic modalities involving CAD. 

REPORTABLE OUTCOMES 

1. Jiang Y, Nishikawa RM, Schmidt RA, Toledano AY, Doi K. The potential of computer-aided 

diagnosis (CAD) to reduce variability in radiologists' interpretation of mammograms. Radiology 

11Q:1%1-19A, 2001. 

2. Beiden SV, Wagner RF, Campbell G, Metz CE, Jiang Y. Components-of-variance models for 

random-effects ROC analysis: the case of unequal variance structures across modalities. Acad 

Radiol 8:605-615, 2001. 

3. Jiang Y. Computer-aided diagnosis of breast cancer in mammography: evidence and potential. 

Technology in Cancer Research and Treatment 1:211-216, 2002. 

4. Jiang Y, Nishikawa RM, Schmidt RA, D'Orsi CJ, Vybomy CJ, Giger ML, Lan L, Huo Z, Edwards 

AV. Comparison of BI-RADS lesion descriptors and computer-extracted image features for 

computer classification of malignant and benign breast lesions. Presented at the 6th International 

workshop on Digital Mammography, Bremen, Germany, 2002. 
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5. Jiang Y, Nishikawa RM, Schmidt RA, D'Orsi CJ, Vybomy CJ, Giger ML, Lan L, Huo Z, Edwards 

AV. Comparison of BI-RADS lesion descriptors and computer-extracted image features for 

computer classification of malignant and benign breast lesions. In Peitgen HO, Ed., Digital 

Mammography 2002 Heidelberg: Springer Verlag Publishers, 2002. 

6. Jiang Y, Paquerault S, Nishikawa RM, Giger ML, Schmidt RA, D'Orsi CJ, Vybomy CJ, Metz CE. 

Computer-aided diagnosis of malignant and benign breast lesions in mammograms. Invited 

symposium platform presentation at the Era of Hope 2002 Department of Defense Breast Cancer 

Research Program Meeting, Orlando, FL, 2002. 

7. Jiang Y, Paquerault S, Nishikawa RM, Giger ML, Schmidt RA, D'Orsi CJ, Vybomy CJ, Metz CE. 

Computer-aided diagnosis of malignant and benign breast lesions in mammograms. Poster 

presented at the Era of Hope 2002 Department of Defense Breast Cancer Research Program 

Meeting, Oriando, FL, 2002. 

8. Jiang Y, Schmidt RA, D'Orsi CJ, Vybomy CJ, Nishikawa RM, Paquerault S. Classification of 

malignant and benign clustered microcalcifications based on computer-extracted lesion features and 

radiologist-provided BI-RADS description. Radiology 225(P):, 2002. Presented at the 88th 

Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, IL, 

2002. 

9. Paquerault S, Jiang Y, Nishikawa RM, Schmidt RA, D'Orsi CJ. Computer BI-RADS analysis of 

clustered microcalcifications in mammograms. Medical Physics 29:, 2002. 

10. Jiang Y, Metz CE. A new method for combining radiologists' and a computer's diagnostic 

assessments. Radiology 221(P):424, 2001. Presented at the 87th Scientific Assembly and Annual 

Meeting of Radiological Society of North America, Chicago, IL, 2001. 

11. Jiang Y. Uncertainty in the output of artificial neural networks. Presented at Medical Image 

Perception Conference IX, Airlie Conference Center, Warrenton, VA, 2001. 

12. Jiang Y. Uncertainty of artificial neural network output. Medical Physics 29:1323, 2002. Presented 

at the 44th Annual Meeting of the American Association of Physicists in Medicine, Montreal, 

Canada, 2002. 



13. Jiang Y. Uncertainty in the output of artificial neural networks. IEEE Transactions on Medical 

Imaging (submitted August 2002). 

14. Jiang Y. Comparison of student's t-test and the Dorfman-Berbaum-Metz (DBM) method for the 

statistical comparison of competing diagnostic modalities. Proc. SPIE 4686:205-209, 2002. 

CONCLUSIONS 

We have made progress toward the objectives of this project. The research results are positive 

and support project continuation. 

REFERENCES 

1. Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Giger ML, Doi K. Improving breast cancer 

diagnosis with computer-aided diagnosis. Acad Radiol 6:22-33,1999. 

2. Jiang Y, Nishikawa RM, Wolverton DE, Metz CE, Giger ML, Schmidt RA, Vybomy CJ, Doi K. 

Malignant and benign clustered microcalcifications: Automated feature analysis and classification. 

Radiology 198:671-678, 1996. 

3. Jiang Y, Nishikawa RM, Schmidt RA, Toledano AY, Doi K. The potential of computer-aided 

diagnosis (CAD) to reduce variability in radiologists' interpretation of mammograms. Radiology 

220:787-794,2001. 

4. Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Doi K. Multiple benefits of computer-aided 

diagnosis (CAD) in the diagnosis of malignant and benign breast lesions. Presented at World 

Congress on Medical Physics and Biomedical Engineering, July 2000. 

5. Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Doi K. Three potential benefits of computer-aided 

diagnosis (CAD) in breast cancer diagnosis. Chicago, Illinois: the 86th Scientific Assembly and 

Annual Meeting of the Radiological Society of North America, 2000. 

6. Beiden SV, Wagner RF, Campbell G, Metz CE, Jiang Y. Components-of-variance models for 

random-effects ROC analysis: the case of unequal variance structures across modalities. Acad 

Radiol 8:605-615, 2001. 



7. Jiang Y. Computer-aided diagnosis of breast cancer in mammography: evidence and potential. 

Technology in Cancer Research and Treatment 1:211-216, 2002. 

8. Huo Z, Giger ML, Vybomy CJ, Metz CE. Breast Cancer: effectiveness of computer-aided diagnosis 

observer study with independent database of mammograms. Radiology 224:560-568, 2002. 

9. American College of Radiology (ACR). Breast imaging reporting and data system (BI-RADSTM). 

Vol. Third Edition ed. Reston, VA: American College of Radiology, pp. 1998. 

10. Baker JA, Komguth PJ, Lo JY, Floyd CEJ. Artificial neural network: improving the quality of 

breast biopsy recommendations. Radiology 198:131-135,1996. 

11. Jiang Y, Nishikawa RM, Schmidt RA, D'Orsi CJ, Vybomy CJ, Giger ML, Lan L, Huo Z, Edwards 

AV. Comparison of BI-RADS lesion descriptors and computer-extracted image features for 

computer classification of malignant and benign breast lesions. Presented at the 6th International 

workshop on Digital Mammography, Bremen, Germany, 2002. 

12. Jiang Y, Nishikawa RM, Schmidt RA, D'Orsi CJ, Vybomy CJ, Giger ML, Lan L, Huo Z, Edwards 

AV. Comparison of BI-RADS lesion descriptors and computer-extracted image features for 

computer classification of malignant and benign breast lesions. In Peitgen HO, Ed., Digital 

Mammography 2002 Heidelberg: Springer Verlag Publishers, 2002. 

13. Jiang Y, Paquerault S, Nishikawa RM, Giger ML, Schmidt RA, D'Orsi CJ, Vybomy CJ, Metz CE. 

Computer-aided diagnosis of malignant and benign breast lesions in mammograms. Invited 

symposium platform presentation at the Era of Hope 2002 Department of Defense Breast Cancer 

Research Program Meeting, Orlando, PL, 2002. 

14. Jiang Y, Paquerault S, Nishikawa RM, Giger ML, Schmidt RA, D'Orsi CJ, Vybomy CJ, Metz CE. 

Computer-aided diagnosis of malignant and benign breast lesions in mammograms. Poster 

presented at the Era of Hope 2002 Department of Defense Breast Cancer Research Program 

Meeting, Orlando, PL, 2002. 



15. Jiang Y, Schmidt RA, D'Orsi CJ, Vybomy CJ, Nishikawa RM, Paquerault S. Classification of 

malignant and benign clustered microcalcifications based on computer-extracted lesion features and 

radiologist-provided BI-RADS description. Radiology 225(P):, 2002. Presented at the 88th 

Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, IL, 

2002. 

16. Paquerault S, Jiang Y, Nishikawa RM, Schmidt RA, D'Orsi CJ. Computer BI-RADS analysis of 

clustered microcalcifications in mammograms. Medical Physics 29:, 2002. 

17. Metz CE, Wang P-L and Kronman HE, "A new approach for testing the significance of differences 

between ROC curves measured from correlated data," in Information Processing in Medical 

Imaging, edited by F. Deconinck, pp. 432-445, Nijhoff, The Hague, 1984. 

18. Jiang Y, Metz CE. An optimal method for combining two correlated diagnostic assessments with 

application to computer-aided diagnosis. Presented at SPIE's International Symposium: Medical 

Imaging 2001, February 2001. 

19. Jiang Y, Metz CE. An optimal method for combining two correlated diagnostic assessments with 

appUcation to computer-aided diagnosis. Proc. SPIE 4324:177-183, 2001. 

20. Jiang Y, Metz CE. A new method for combining radiologists' and a computer's diagnostic 

assessments. Radiology 221(P):424, 2001. Presented at the 87th Scientific Assembly and Annual 

Meeting of Radiological Society of North America, Chicago, IL, 2001. 

21. Jiang Y. Uncertainty in the output of artificial neural networks. Presented at Medical Image 

Perception Conference IX, Airlie Conference Center, Warrenton, VA, 2001. 

22. Jiang Y. Uncertainty of artificial neural network output. Medical Physics 29:1323, 2002. Presented 

at the 44th Annual Meeting of the American Association of Physicists in Medicine, Montreal, 

Canada, 2002. 

23. Jiang Y. Uncertainty in the output of artificial neural networks. IEEE Transactions on Medical 

Imaging (submitted August 2002). 

24. Metz CE. Some practical issues of experimental design and data analysis in radiological ROC 

studies. Invest Radiol 1989; 24:234-245. 



25. Dorfman DD, Berbaum KS, Metz CE. Receiver operating characteristic rating analysis. 

Generalization to the population of readers and patients with the jackknife method. Invest Radiol 

1992;27:723-731. 

26. Jiang Y. Comparison of student's t-test and the Dorfman-Berbaum-Metz (DEM) method for the 

statistical comparison of competing diagnostic modalities. Proc. SPIE 4686:205-209, 2002. 

LIST OF ATTACHED REPRINTS 

1. Jiang Y, Nishikawa RM, Schmidt RA, Toledano AY, Doi K. The potential of computer-aided 

diagnosis (CAD) to reduce variability in radiologists' interpretation of mammograms. Radiology 

220:787-794,2001. 

2. Beiden SV, Wagner RF, Campbell G, Metz CE, Jiang Y. Components-of-variance models for 

random-effects ROC analysis: the case of unequal variance structures across modalities. Acad 

Radiol 8:605-615,2001. 

3. Jiang Y. Computer-aided diagnosis of breast cancer in mammography: evidence and potential. 

Technology in Cancer Research and Treatment 1:211-216, 2002. 

4. Jiang Y, Nishikawa RM, Schmidt RA, D'Orsi CJ, Vybomy CJ, Giger ML, Lan L, Huo Z, Edwards 

AV. Comparison of BI-RADS lesion descriptors and computer-extracted image features for 

computer classification of malignant and benign breast lesions. In Peitgen HO, Ed., Digital 

Mammography 2002 Heidelberg: Springer Verlag Publishers, 2002. 

5. Jiang Y. Comparison of student's t-test and the Dorfman-Berbaum-Metz (DBM) method for the 

statistical comparison of competing diagnostic modalities. Proc. SPIE 4686:205-209, 2002. 

10 



Yulei Jiang, PhD 
Robert M. Nishikawa, PhD 
Robert A. Schmidt, MD^ 
Alicia Y. Toledano, ScD' 
Kunio Doi, PhD 

Index terms: 
Breast neoplasms, calcification, 00.81 
Breast neoplasms, diagnosis, 00.30 
Computers, diagnostic aid 
Diagnostic radiology, observer 

performance 

Published online: August 21, 2001 
10.1148/radiol.220001257 

Radiology 2001; 220:787-794 

Abbreviations: 
A^ = area under the ROC curve 
CAD = computer-aided diagnosis 
ROC = receiver operating 

characteristic 

' From the Kurt Rossmann Laborato- 
ries for Radiologic Image Research, 
Deptof Radiology (Y.|., R.M.N., R.A.S., 
K.D.), and the Depts of Anesthesia and 
Critical Care (A.Y.T.) and Health Stud- 
ies (A.Y.T.), Univ of Chicago, 5841 S 
Maryland Ave, IVIC2026, Chicago, iL 
60637. Received )ul 13, 2000; revision 
requested Aug 21; final revision re- 
ceived Jan 15, 2001; accepted Feb 15. 
Supported in part by NIH grant CA 
60187. Address correspondence to 
Y.J. (e-mail: y-jiang@uchicago.edu). 

This worl( was performed as part of 
the Intemational Digital Mammogra- 
phy Development Group. The con- 
tents of this article are solely the re- 
sponsibility of the authors and do not 
necessarily represent the official views 
of any of the supporting organiza- 
tions. 

Current addresses: 
^ Dept of Radiology, New York Univ 
Medical Ctr, NY. 
' Ctr for Statistical Sciences, Brown 
Univ, Providence, Rl. 

» RSNA, 2001 

Author contributions: 
Guarantor of integrity of entire study, 
Y.).; study concepts, Y.J., R.M.N., 
R.A.S., K.D.; study design, Y.J., R.M.N., 
R.A.S.; literature research, Y.)., A.Y.T.; 
experimental studies, Y.J.; data acqui- 
sition, Y.J.; data analysis/interpreta- 
tion, Y.)., A.Y.T.; statistical analysis, 
A.Y.T.; manuscript preparation and 
editing, Y.).; manuscript definition of 
intellectual content, revision/review, 
and final version approval, all authors. 

Potential of Computer-aided 
Diagnosis to Reduce Variability 
in Radiologists' Interpretations 
of Mammograms Depicting 
Microcalcifications^ 

PURPOSE: To evaluate whether computer-aided diagnosis can reduce interobserver 
variability in the interpretation of mammograms. 

MATERIALS AND IVIETHODS: Ten radiologists interpreted mammograms show/ing 
clustered microcalcifications in 104 patients. Decisions for biopsy or follow-up were 
made with and without a computer aid, and these decisions were compared. The 
computer was used to estimate the likelihood that a microcalcification cluster was 
due to a malignancy. Variability in the radiologists' recommendations for biopsy 
versus follow-up was then analyzed. 

RESULTS: Variation in the radiologists' accuracy, as measured with the SD of the 
area under the receiver operating characteristic curve, was reduced by 46% with 
computer aid. Access to the computer aid increased the agreement among all 
observers from 13% to 32% of the total cases (P < .001), while the K value increased 
from 0.19 to 0.41 (P < .05). Use of computer aid eliminated two-thirds of the 
substantial disagreements in which two radiologists recommended biopsy and 
routine screening in the same patient (P < .05). 

CONCLUSION: In addition to its demonstrated potential to improve diagnostic 
accuracy, computer-aided diagnosis has the potential to reduce the variability 
among radiologists in the interpretation of mammograms. 

Multiple investigators (1-4) have shown that considerable variability exists among radi- 
ologists in the interpretation of mammograms. This variability affects the diagnostic 
accuracy of radiologists, as measured with receiver operating characteristic (ROC) analysis. 
Moreover, it directly affects their clinical decisions to recommend either biopsy or follow- 
up. Because such variability decreases the clinical effectiveness of breast cancer screening, 
it should be eliminated whenever possible. Some (5-7) have suggested that computer- 
aided diagnosis (CAD), in which a radiologist combines an independent analysis of 
mammograms performed by using a computer technique with his or her own reading, can 
potentially reduce interpretation variability. However, to our knowledge, this potential of 
CAD has not yet been demonstrated. We analyzed data obtained in an observer study (8) 
to compare variabilities in the interpretation of mammograms with and vrithout use of a 
computer aid. Previously, we analyzed the data of that observer study and found that 
radiologists can improve their diagnostic performance by using a computer aid (8). The 
purpose of this study was to evaluate whether CAD can reduce interobserver variability 
among radiologists in the interpretation of mammograms. 

MATEMALS AND METHODS  

Case Materials 

We obtained (from the University of Chicago Hospitals, Illinois) 104 mammograms of 
46 consecutive malignant and 58 consecutive benign clustered microcalcifications that 
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were examined at biopsy. Our institu- 
tional review board approved a waiver for 
patient consent for this study because 
our study involved only retrospective re- 
view of existing mammograms. We in- 
cluded only cases of microcalcification 
because our computer aid was specifically 
designed to analyze this common type of 
mammographic lesion (work on com- 
puter analysis of breast masses is ongoing 
[9]) and because microcalcifications are 
often the only mammographic indica- 
tion of breast cancer (10). 

Of the malignant cases, 37 were ductal 
carcinoma in situ, and nine were invasive 
ductal carcinoma. Of the benign cases, 
two were lobular carcinoma in situ, four 
were atypical ductal hyperplasia, 16 were 
hyperplasia without atypia, seven were 
adenosis, six were fibroadenoma, 18 were 
fibrocystic change or fibrosis, and five 
were breast tissue without specific abnor- 
mality. 

Consecutive cases were collected by us- 
ing the following criteria: (a) A cluster of 
microcalcifications was the only suspect 
lesion, which led to the biopsy and for 
which the pathologic results were defin- 
itive; (b) original mammograms, includ- 
ing at least two standard views and one 
magnification view, were available; and 
(c) the technical quality of the mammo- 
grams was adequate for interpretation 
(8). To balance the number of malignant 
and benign cases and thereby increase 
statistical power, the malignant cases 
were collected, necessarily, from a longer 
period (11,12). These cases were clinically 
evaluated before the Breast Imaging Re- 
porting and Data System was imple- 
mented; therefore, they were not as- 
signed a Breast Imaging Reporting and 
Data System assessment category (8). Ad- 
ditional specific details regarding case se- 
lection are reported elsewhere (8). 

Radiologist Observers 

Ten radiologists, who had experience 
in mammography but who had not pre- 
viously seen the study cases, interpreted 
the mammograms. Five observers were 
practicing radiologists from the Chicago 
metropolitan area, and five were senior 
radiology residents from our institution. 
For the attending radiologists, mammog- 
raphy accounted for an average of 30% of 
their clinical practice, and they were cer- 
tified readers according to the Mammog- 
raphy Quality Standards Act. They had 
been reading mammograms for an aver- 
age of 9 years (median, 6 years; range, 
1-30 years), and they had read at least 
1,000 mammograms in the preceding 

year. The residents had limited experi- 
ence from training rotations of 1-2 
months duration. Written informed con- 
sent, as approved by our institutional re- 
view board, was obtained from all observ- 
ers after the nature of the experiment was 
fully explained. Data analysis was per- 
formed for three observer groups: all ob- 
servers (n = 10), attending radiologists 
(n = 5), and residents (n = 5). 

Computer Aid 

The computer aid was an estimate of 
the likelihood (0%-100%) that a micro- 
calcification cluster was due to a malig- 
nancy. An artificial neural network calcu- 
lated the estimate on the basis of eight 
image features that were automatically 
extracted from standard-view screen-film 
mammograms (13). Mammograms were 
digitized with a 0.1-mm pixel size and a 
12-bit gray scale by using a digitizer (Lu- 
miscan 100; Lumisys, Sunnyvale, Calif). 
Locations of microcalcifications were 
manually identified on a computer mon- 
itor (8). 

The observers were explicitly in- 
structed to use the computer aid in their 
interpretation. They were told that the 
computer output had a sensitivity (de- 
fined as the fraction of cancers for which 
biopsy would have been recommended) 
of approximately 90% and positive pre- 
dictive value (defined as the fraction of 
all cases for which biopsy would have 
been recommended that were cancers) of 
approximately 61% when a threshold of 
30% was applied to the computer-esti- 
mated likelihood of malignancy. The per- 
formance estimates of the computer were 
obtained from the study cases. One inter- 
pretation of this instruction is that any 
observer could have achieved the same 
accuracy as the computer by recom- 
mending biopsy only when the com- 
puter reported a likelihood of malig- 
nancy of 30% or greater. 

Data Acquisition 

Each observer reviewed the cases twice: 
once with and once without the com- 
puter aid; each review was separated by 
an average of 30 days (range, 10-60 
days). The following counterbalanced 
study design was used: Half of the mam- 
mograms were read without the com- 
puter aid in the first reading session and 
were read again with the computer aid in 
the second reading session; the other half 
of the mammograms were read first with 
the computer aid and then without the 
aid. The study design minimizes poten- 
tial biases; it has been well documented 

TABLE 1 
Clinical Recommendations Available 
to the Observers 

Option Recommendation 

a Surgical biopsy 
b Alternative tissue sampling* 
c Short-term follow-up 
d Routine follow-up 

* Stereotactic or ultrasonography-guided core 
biopsy or fine-needle aspiration. 

(11,12) and has been described (8) in de- 
tail. The observers were asked to report 
(a) their level of confidence (on an analog 
scale of 0%-100%) that a lesion was ma- 
lignant and (b) their clinical recommen- 
dation (Table 1). 

Data Analyses 

We assessed interpretation variability 
by using three methods: (a) sensitivity, 
specificity, and ROC analysis; (b) analysis 
of interobserver agreement; and (c) anal- 
ysis of substantial disagreements in clin- 
ical recommendations. Interobserver var- 
iabiUty was assessed in these analyses. 
Intraobserver variability was not mea- 
sured because no observer repeated mam- 
mographic interpretation either with or 
without the computer aid. Custom soft- 
ware was used to perform all calculations 
except calculations of K values, which 
were determined by using other software 
(sPLus; MathSoft, Seattle, Wash). The Stu- 
dent t and McNemar x^ tests were used to 
calculate P values, and the bootstrap 
method was used to estimate the 95% CIs 
in the statistical analyses. 

Sensitivity was defined as the fraction 
of cancers for which surgical biopsy or 
alternative tissue sampling was recom- 
mended. Specificity was defined as the 
fraction of benign lesions for which 
short-term or routine follow-up was rec- 
ommended. Because sensitivity and spec- 
ificity incompletely describe accuracy 
and because they depend on how a radi- 
ologist selects a decision threshold to de- 
fine positive diagnoses, we also per- 
formed an ROC analysis, which is the 
standard method for evaluating observer 
accuracy (6,14,15). We obtained ROC 
curves by fitting the binormal model to 
the confidence data, and we obtained 
summary ROC curves for the 10 observ- 
ers as a group by averaging the slope and 
intercept parameters of the individual 
curves (14). The area under the ROC 
curve (A^) was used as a summary index 
of accuracy. A^ can have values between 
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Figure 1. ROC curves and sensitivity and specificity data obtained 
from the interpretation of 104 mammograms by 10 radiologists. A clus- 
ter of mlCTocalcifications was present in all cases; 46 cancers and 58 
benign lesions were confirmed at biopsy. The effect of a computer aid 
was tested; it provided an estimate of the likelihood that mlcrocalcifica- 
tions were due to a malignancy. Sensitivity and spedflcity results were 
based on the radiologists' recommendations for biopsy or follow-up. The 
ROC curves were based on the radiologists' diagnostic confidence. 

0.5, which represents no apparent accu- 
racy (diagnoses corresponding to random 
chance alone), and 1.0, which represents 
perfect accuracy. 

A histogram of interobserver agree- 
ment regarding clinical recommendations 
was constructed, and the K statistic was 
computed. This histogram displayed the 
number of cases as a function of the num- 
t>er of observers in agreement. For the 10 
observers, 11 patterns of agreement in the 
recommendations were possible; these pat- 
terns included 10 biopsy recommenda- 
tions, nine biopsy and one follow-up rec- 
ommendations, eight biopsy and two 
follow-up recoirmiendations, and so on. 
For this analysis, we compared the recom- 
mendations for biopsy (option a or b in 
Table 1) versus those for follow-up (option 
c or d in Table 1), because this is the most 
important clinical decision. Separate histo- 
grams were constructed for cancers and be- 
nign lesions. Separate histograms were also 
constructed for attending radiologists, res- 
idents, and all radiologists. The histograms 
were similar for the three observer groups; 
we report only the summary histogram of 
all radiologists combined. 

The K statistic is widely used as a mea- 
sure of agreement (16). It reflects the pro- 
portion of agreement after the propor- 

tion of agreement that can be attributed 
to chance alone is subtracted (17). K 
equals 1 for perfect agreement, and K 
equals 0 when the agreement can be at- 
tributed to chance alone. We computed 
the multireader K value (18) and esti- 
mated the 95% Cls by using the boot- 
strap method. 

Using the definitions by Elmore et al 
(1), we defined substantial disagreement 
as a situation in which one radiologist 
recommended biopsy (option a or b in 
Table 1) and another recommended rou- 
tine follow-up (option d in Table 1) in 
the same case (short-term follow-up was 
excluded from this particular analysis to 
emphasize extremes in decision making). 
Pairwise and per-patient frequencies of 
substantial disagreement were calcu- 
lated. The pairwise frequency was the oc- 
currence of substantial disagreement in 
all recommendation pairs (ie, recommen- 
dations made by two different observers 
in the same case). The total number of 
recommendation pairs was equal to the 
following: [number of cases X number of 
readers x (number of readers - l)]/2. For 
10 observers, there were a total of (104 x 
10 X 9)/2, or 4,680, recommendation 
pairs. The per-patient frequency was the 
fraction of total cases (ie, 104 cases) in 

which different observers simultaneously 
recommended at least one biopsy proce- 
dure and at least one routine screening 
procedure. Because of the large differ- 
ences in the denominators, the pairwise 
frequency tended to produce a low esti- 
mate, and the per-patient frequency 
tended to produce a high estimate of the 
substantial disagreement; neither was 
clinically accurate, because it was un- 
likely that 10 radiologists would have in- 
dependently evaluated the case in clini- 
cal practice. Because the true frequency 
of substantial disagreement was expected 
to be between the pauwise and per-pa- 
tient frequencies and because, to our 
knowledge, no single accurate measure is 
known, we report both pairwise and per- 
patient results, as Elmore et al (1) did. 

RESULTS  

Effect of the Computer Aid on 
Sensitivity, Specificity, and ROC 
Curves 

Sensitivity and specificity data and sum- 
mary ROC curves are shovm in Figure 1. 
The ranges and averages of the sensitivity, 
specificity, and positive predictive values 
are shovra in Table 2. For the group of all 
observers (n = 10), without the computer 
aid there was a range of 35% in sensitivity 
and 44% in specificity. When the com- 
puter aid was used, the range in sensitivity 
was reduced to 26%, but the range in spec- 
ificity remained 45%. Results for the 
groups of attending radiologists (n = 5) 
and residents (n = 5) were similar (Table 2). 
The average sensitivity, specificity, and 
positive predictive values inaeased signifi- 
cantly v«th the computer aid (8). Table 3 
lists the A^ values. The SD of ^l^ values was 
reduced fi-om 0.056 to 0.030, or 46%, with 
the computer aid. 

Effect of Computer Aid on 
Agreement in Recommendations 

The histogram of interobserver agree- 
ment (Fig 2) provides detailed information 
concerning the extent of agreement, for 
both cancers and benign lesions, and the 
changes as a result of the computer aid. 
With the computer aid, complete agree- 
ment among all 10 radiologists was 
achieved in 20 (43%) cancer cases. Agree- 
ment in benign cases had a broader distri- 
bution. Highlights of Figure 2 are summa- 
rized in Table 4. Without the computer aid, 
complete agreement by all observers on a 
correct recoirmiendation (biopsy for can- 
cers and follow-up for benign lesions) oc- 
curred in nine cases (nine malignant and 
no benign lesions). With computer aid, the 
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TABLE 2 
Effect of CAD ( m Sensitivity, Specificity, and Positive Predictive Values 

Value 

All Observers (n = 10) Attending Radiologists (n = 5) 

Without Aid                With Aid 

Residents (n -- = 5) 

Without Aid With Aid Without Aid With Aid 

Sensitivity (%) 
Range 52-87 74-100 52-87 74-96 61-87 74-100 

Average ± SD 74 ±11 87 ±9 75 ±14 88 ±9 72 ±10 87 ±10 

Specificity (%) 
Range 9-53 22-67 9-53 28-60 19-52 22-67 

Average ± SD 32i15 42 ±15 29 ±18 42 + 15 34 ±14 42 ±16 
Positive predictive value (%) 

Ranae 42-52 51-64 42-51 51-60 43-52 51-64 
Average ± SD                                     46 ± 3 

Note.—P values (Student t test) for the all obsen/ers, 

55 ±4 46 ±4 55 ±4 47 ±3 55 ±5 

attending radiologists and residents, respectively, were as follows: sensitivity, <.001 (t = 5.2, 
df = 9), .03 (t = = 3.3, df = 4), and .02 (t = 3.7, df = 4); specificity, .003 (t = 4.1, df = 9), .007 (t = 5.0, df= 4), and .14 (t = 1.8, df = 
4); and positive jredictive value. <.001 (t = 11.9, df = = 9), <.001 (t = 9.3, df = 4), and .002 (t = 7.7, dt = 4). 

TABLE 3 
Effects of CAD on A^ 

A^ without A^ with 
Observers Aid Aid 

Attending 
radiologists 

A 0.64 (0.055) 0.76 (0.046) 
B 0.60 (0.056) 0.76 (0.047) 
C 0.72(0.051) 0.77 (0.046) 
D 0.54 (0.056) 0.72 (0.050) 
E 0.59 (0.057) 0.79 (0.043) 
Average 0.62 (0.067) 0.76 (0.028) 

Radiology 
residents 

F 0.53 (0.056) 0.70 (0.050) 
C 0.63 (0.055) 0.77 (0.045) 
H 0.60 (0.057) 0.73 (0.049) 
1 0.66 (0.054) 0.75 (0.047) 
1 0.64 (0.056) 0.79 (0.044) 
Average 0.61 (0.050) 0.75 (0.036) 

All, average 0.61 (0.056) 0.75 (0.030) 

Note.—Data in parentheses are SDs. 

20- 

complete agreement on a correct recom- 
mendation increased to 26 cases (20 malig- 
nant and six benign lesions). Conflicting 
recommendations in which the minority 
consisted of more than 20% (ie, three to 
five of 10 observers or two of five observers) 
of the total observers occurred in 43 cases 
vrithout aid; this nimiber was reduced to 
28 cases with the computer aid. Use of the 
computer aid improved agreement and re- 
duced the occurrence of conflicting recom- 
mendations in all data categories (P < .05 
with one exception of P = .07 in decreas- 
ing conflicting recommendations among 
residents; McNemar x^ test). 

K values are shown in Table 5. The 
results were consistent among the three 
observer groups (all radiologists, attend- 
ing radiologists, and residents). Although 
the residents' K values were smaller than 
those of the attending radiologists, the 

Malignant cases 

10/0  9/1  8/2 7/3 5/5 4/6  3/7  2/8  1/9  0/10 

Distribution of Recommendations (No. Biopsy/No. Follow-up) 
Figure 2. Histograms show tJie effect of CAD on tlie agreement in the recommendations for clinical 
management that were made by the 10 radiologists. Recommendations for biopsy versus any type of 
follow-up were made after the radiologists Independently interpreted mammograms that depicted 
clustered miaocaldfications. The computer aid provided an estimate of the likelihood tliat the 
miaocaldfications were due to a malignancy. Black Irars = without the computer aid, white bars = with 
the computer aid, and * = ideal situation of complete agreement in the correct recommendation. 

differences were not statistically signifi- 
cant (P > .05). In all three observer 
groups, use of the computer aid im- 
proved agreement from fair to moderate 
(on the ordinal scale where a K value of 
0.21-0.40 represents fair agreement be- 
yond chance, and 0.41-0.60 represents 
moderate agreement beyond chance 
[19]). All improvements were statistically 
significant (P < .05). 

Effect of Computer Aid on 
Substantial Disagreement in 
Recommendations 

Interobserver    agreement    implicitly 
quantifies disagreement, but it does not 

distinguish between minor disagree- 
ments and completely incompatible di- 
agnoses. Substantial disagreements repre- 
sent contradictory diagnoses that can 
potentially cause greater confusion for 
the referring physicians and patients. Fig- 
ure 3 shows the palrwise and per-patient 
frequencies of substantial disagreements. 
For recoirmiendations made by attending 
radiologists without aid, the pairwise fre- 
quency of contradiction was 7%, and the 
per-patient frequency of contradiction 
was 23%. The frequencies were higher 
among residents: The pairwise frequency 
was 19%, and the per-patient frequency 
was 51%. Use of the computer aid re- 
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TABLE 4 
Effect of CAD on Agreement of Clinical Recommendations 

All Observers (n = 10) 

Cases Without Aid With Aid 

Complete agreements* 13 (13) 
Correct recommendations 9 
Missed cancers 1 

Conflicting recommendations' 43 (41) 

33 (32) 
26 

0 
28 (27) 

Attending Radiologists (n = S) 

Without Aid With Aid 

38 (37) 
17 

1 
31 (30) 

53(51) 
39 

1 
18(17) 

Residents (n = 5) 

Without Aid With Aid 

27 (26) 
18 

3 
31 (30) 

46 (44) 
32 

0 
20(19) 

Note.—Data are the number of cases (n = 104). Data in parentheses are percentages. 
* Complete agreement was defined as a situation in which all observers made the same recommendation for either biopsy or follow-up. P values 

(McNemar x^ test) for all observers, attending radiologists, and residents, respectively, were <.001 (x' = 14.29), .05 (x^ = 3.95), and <.001 (x^ = 
10.94). 

t Conflicting recommendations were considered to occur when the minority opinion was held by more than 20% of the observers. P values 
(McNemar x^ test) for all observers, attending radiologists, and residents, respectively, were .02 (x^ = 5.49), .03 (x^ = 4.57), and .07 (x^ = 3.27). 

TABLE 5 
Effect of CAD on Agreement 

Observers K without Aid K with Aid Improvement* 

All 
Attending radiologists 
Residents 

0.19(0.13,0.28) 
0.21 (0.13,0.32) 
0.17 (0.08, 0.28) 

0.41 (0.32,0.51) 
0.44 (0.32, 0.56) 
0.37 (0.26, 0.48) 

0.22(0.11,0.33) 
0.23 (0.07, 0.38) 
0.19(0.05,0.33) 

Note.—Data in parentheses are 95% CIs obtained by using the statistical method of bootstrapping 
with 10,000 repetitions. 

* P < .05 in all improvement categories. 

All Benign 
Cancer 

All Benign 
Cancer 

Category 

All Benign 
Cancer 

Figure 3. Histograms show the effect of CAD on substantial disagreements in clinical recom- 
mendations (ie, biopsy vs routine screening). Data shown are pairwise (top) and per-patlent 
(bottom) frequencies. Pairwise frequencies were calculated from all pairs of recommendations 
made by two different radiologists. Pet-patient frequencies were calculated from the total number 
of cases in which the recommendations were made by multiple radiologists (« = 5 for attending 
radiologists, n = 5 for residents, and n = 10 for all readers). Black bars = without the computer 
aid, and white bars = with the computer aid. 

duced all occurrences of substantial dis- 
agreements. The reductions averaged 
63% among attending radiologists and 
28% among residents. The reduction was 
statistically significant for all cases com- 
bined and for cancers alone (P < .04 and 
X^ > 4.33, with one exception of P = .052 
and x^ = 3.77 for residents and cancers 
alone; McNemar x^ test [The degree of 
freedom for the McNemar x^ test is al- 
ways 1.]). The reduction was not statisti- 
cally significant for benign cases alone 
(P > .08, x^ < 3.00; McNemar x^ test). 

DISCUSSION  

Interpretation of Results 

To our knowledge, there is no single 
measure of agreement that can be univer- 
sally used to quantify interpretation vari- 
ability. Although K is widely used as a 
quantitative measure of agreement, it is 
not without limitations when the find- 
ings of different studies are compared 
(20). More important, there is no explicit 
relationship between K statistic and ROC 
analysis; the latter is often used to quan- 
tify diagnostic accuracy. Therefore, we 
extended our calculations beyond deter- 
mining the K value to three separate but 
related analyses. First, we calculated the 
variability that is evident in the ROC 
summary indices. This analysis could 
serve as a direct link between the calcu- 
lation of variability and the calculation 
of diagnostic accuracy by means of ROC 
analysis. Second, we calculated the K 
value and the pattern of agreement. 
Third, we assessed variability from the 
points of view of the referring physician 
and the patient by using a calculation In 
the literature (1). Each of the three anal- 
yses addressed a different aspect of vari- 
ability, and together they helped to de- 
fine its magnitude and the ability of CAD 
to help reduce the variability. 
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TABLE 6 
Effect of CAD on Observer Variability 

Average Accuracy* SD 

Study Task of Interpretation Accuracy Index        Without Aid        With Aid       Without Aid      With Aid 

Getty et al (S)t Differentiation of malignant and benign 
breast lesions on mammograms 

Chan et al (21 )* Detection of clustered 
microcalcifications on mammograms 

Kegelmeyer et al (22)* Detection of spiculated masses on 
mammograms 

Jiang et al (8)t Differentiation of malignant and benign 
clustered microcalcifications on 
mammograms 

Chan et al (23)f" Differentiation of malignant and benign 
masses on mammograms 

Kobayashi et al (24)* Detection of lung nodules on chest 
radiographs 

Difazio et al (25)* Detection of temporal change on chest 
radiographs 

Monnier-Cholley et al (26)*    Detection of interstitial infiltrates in 
chest radiographs 

Ashizawa et al (27)* Differential diagnosis of interstitial lung 
disease on chest radiographs 

A^ 0.832 0.880 

k^ 0.924 0.953 

Sensitivity/specificity   0.806/0.9548    0.903/0.9695 

Z^. 0.614 0.755 

0.046 0.020 

0.044 0.041 

0.051/0.054 0.048/0.039 

0.056 0.030 

K 0.860/0.912 0.900/0.947 0.044/0.026 0.037/0.020 

4 0.894 0.940 0.053 0.027 

K 0.887 0.984 0.048 0.011 

K 0.948 0.970 0.034 0.024 

K 0.826 0.911 0.038 0.024 

Note.—Number in parentheses is the reference number. 
* Unless otherwise specified, P < .05 for all improvements in the accuracy Index, as reported In the original article. 
t Data were derived from data in the reference. 
* Data were taken directly from the reference. 
s P > .05 for all improvements in the accuracy index, as reported In the original article. 
" Data are reported for reading condition 1/reading condition 2. 

Our analysis revealed that there is con- 
siderable variability in the interpretation 
of mammograms by radiologists; this 
finding is consistent with that of other 
studies (1-4). We found similar or poorer 
agreement between radiologists, com- 
pared with the results of Elmore et al (1). 
Elmore et al reported a per-patient sub- 
stantial-disagreement frequency of 25%, 
which is similar to our result of 23% for 
attending radiologists. However, our K 
values were generally lower; these values 
suggested poorer agreement. This result 
may have been caused by differences in 
the calculation of K values (ie, averaging 
two-reader K values [1] vs calculating 
multireader K values); also, our study (8) 
did not include cases that were not eval- 
uated at biopsy. To increase the statistical 
power of the study by enhancing the pro- 
portion of cases that were difficult to di- 
agnose, only abnormal cases that had bi- 
opsy confirmation were used in our study 
(11). These difficult cases can be pre- 
sumed to generate more variability in in- 
terpretation. We found a range of 35% In 
sensitivity and a range of 44% in speci- 
ficity. These results agree with the ranges 
of 53% in sensitivity and 45% in specific- 
ity reported by Beam et al (2), who stud- 
ied the results of 108 radiologists. 

Two sources can potentially generate 
variability in the interpretation of mam- 
mograms. First, variations in diagnostic 

accuracy (ie, variations in radiologists' 
abilities to correctly diagnose cancerous 
and cancer-free lesions) maybe a primary 
source of variability. 4^ values vary as a 
result of this variation. Second, a radiol- 
ogist's selection of a decision threshold 
that defines a positive diagnosis in his or 
her interpretation can also produce vari- 
ability (6). A decision threshold is neces- 
sary in all binary diagnostic tasks, and its 
selection is influenced by a radiologist's 
perception of disease prevalence and the 
benefits and costs associated with cor- 
rectly diagnosing the disease (14). Al- 
though selection of different thresholds 
causes sensitivity and specificity to vary 
simultaneously and in opposite direc- 
tions, such variations are not caused by 
and do not represent variations in diag- 
nostic accuracy (6). Selection of the dif- 
ferent thresholds does not cause A^ val- 
ues to vary because an ROC curve, for 
which A^ is a summary index, depicts all 
of the tradeoffs available as the threshold 
is varied. Therefore, selection of the deci- 
sion threshold is an issue that is separate 
from the variation in diagnostic accuracy 
as quantified with A^ values. 

Our results (Fig 1) showed that the sen- 
sitivity and specificity data points were 
on or near the average ROC curves; these 
results indicated that much of the varia- 
tion in sensitivity and specificity was 
caused by the use of different decision 

thresholds during interpretation and not 
by variations in diagnostic accuracy. This is 
consistent with the interpretation of 
D'Orsi and Swets (6) of the results of El- 
more et al (1). As one might expect, the 
similarity in the ranges of sensitivity and 
specificity with and without use of a com- 
puter aid indicated that CAD had little in- 
fluence on the radiologists' choices of de- 
cision thresholds, since CAD is not 
expected to influence the radiologists' per- 
ception of disease prevalence and the ben- 
efits and costs associated with correctly di- 
agnosing the disease. The Improvement in 
accuracy achieved with CAD is a result of 
the radiologists being able to improve their 
performance, as reflected with a different 
(higher) ROC curve. Moreover, compared 
with the without-aid data, the decreased 
dispersion of the with-aid sensitivity and 
specificity data points from the average 
ROC curve shows that CAD helped the ra- 
diologists to interpret mammograms with 
a more uniform, as well as higher, level of 
accuracy. Therefore, although CAD caused 
little change in the ranges of sensitivity 
and specificity (which in our study appear 
to have been determined largely by the 
radiologists' choice of decision thresholds), 
our results showed that CAD helped the 
radiologists to reduce variation in their di- 
agnostic accuracy. 

We analyzed data for attending radiolo- 
gists and residents both In aggregate and in 
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two separate groups, and we found that the 
results were similar except in the frequen- 
cies of substantial disagreement (Fig 3). We 
believe the residents' data are clinically rel- 
evant because the majority of recent resi- 
dents and fellows who go into private prac- 
tice are assigned to reading screening 
mammograms. Although on may interpret 
data from attending radiologists and resi- 
dents differently, Inclusion or exclusion of 
the residents' data did not alter the find- 
ings of this study. 

Comparison with Other Observer 
Study Data 

We conipared our findings with those of 
eight other investigations (5,21-27) of the 
effects of CAD on observer performance. 
By re-analyzing the results of these studies, 
we deduced general conclusions that are 
not limited to a particular computer aid or 
imaging task, as these were different in 
each of the studies; rather, our conclusions 
pertain to CAD in general. We used the 
accuracy indices {A^ in all studies except 
one) and corresponding SDs that were re- 
ported in the original investigations as 
measures of diagnostic accuracy and vari- 
ability. The results (Table 6) showed that 
accuracy was always higher and that its SD 
was always smaller when a computer aid 
was used; these results indicated that accu- 
racy was consistently improved and that 
variability was consistently reduced when 
a computer aid was used. Although these 
studies were not specifically designed to 
measure the effect of a computer aid on 
reader variability, the clear trend of a re- 
duction in reader variability in aU of these 
nonuniformly designed studies indicates 
that the reduction is likely a consequence 
of, rather than a coincidental finding with, 
use of a computer aid. 

The ability of CAD to improve diagnos- 
tic accuracy is conceptually similar to dou- 
ble reading by two radiologists (28), in 
which gains in accuracy are expected if two 
radiologists are able to complement each 
other (29). Several investigators (5,8,21-27) 
suggest that the clinical role of CAD might 
be to serve as a less expensive alternative to 
double reading by radiologists. However, 
to our knowledge, the ability of CAD to 
reduce variability has not been previously 
investigated, and we present the first evi- 
dence. We believe that the computer aid 
provides a reference point, much as read- 
ing with a skilled partner does. In clinical 
practice, the variability of the second hu- 
man reader is one of the major problems 
that prohibits widespread use of this tech- 
nique, despite its promised advantages. Be- 
cause the computer aid is used indepen- 

dent of the radiologists' interpretations of 
the mammograms, it can serve as a refer- 
ence reader that is completely Immune to 
human variability. This could be a unique 
advantage of CAD when it is compared 
with other approaches for reducing vari- 
ability that depend on radiologists' inter- 
pretations, which are subject to the inher- 
ent variation in human perception and 
decision making. CAD also eliminates or 
reduces the need for arbitration or recon- 
ciliation between differing opinions when 
two human readers disagree, because the 
course of action is ultimately determined 
by the radiologist using the added opinion 
of the computer output. The final clinical 
decision remains in the hands of a single 
human reader, and studies (28-31) have 
consistently shown that computer-assisted 
readers perform at a higher level, with im- 
provement comparable to or exceeding that 
seen in traditional double-reader studies. 

Impediments to the clinical use of CAD 
include the radiologic community's under- 
estimation of the extent of individual vari- 
ability in daily practice and the effects that 
missing important low-prevalence events 
or overreacting to common benign condi- 
tions has on saeening. Recent studies have 
focused attention on these problems and 
have aeated an appreciation of the need 
for more standardization of the observer's 
role in the saeening process. 

In surrmiary, a CAD joint reading could 
promote agreement and eliminate some of 
the extreme or erroneous diagnostic opin- 
ions. Both of these outcomes are highly 
desirable in the medical, social, and eco- 
nomic contexts of breast cancer screening 
in an asymptomatic population. 

Two major conclusions can be drawn 
from our data and our findings from 
analysis of nine independent observer- 
performance studies (5,8,21-27): CAD 
can improve diagnostic performance, 
and CAD can simultaneously reduce in- 
terpretation variability. These beneficial 
effects are possible because CAD can help 
radiologists to avoid performing biopsy 
in benign lesions, while it increases, 
rather than decreases, the number of cor- 
rect diagnoses of cancers. The second ca- 
pability is a substantial enhancement to 
the known potential of CAD, which has 
been demonstrated in several studies. 
Our findings suggest that if CAD is incor- 
porated into clinical radiology, improve- 
ments in both accuracy and consistency 
in image interpretation can be expected. 
Patients and referring physicians would 
agree that both of these goals are highly 
desirable. These goals support the inten- 
tion of the Breast Imaging Reporting and 
Data System lexicon introduced by the 

American College of Radiology and the 
Mammography Quality Standards Act, 
that is, to improve the daily practice and 
results of breast cancer screening by fos- 
tering more uniform interpretations. 
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Components-of-Variance Models for 
Random-Effects ROC Analysis: 

The Case of Unequal Variance Structures Across Modalities^ 

Sergey V. Beiden, PhD, Robert F. Wagner, PhD, Gregory Campbell, PhD, Charles E. Metz, PhD, Yule! Jiang, PhD 

Rationale and Objectives. Several of the authors have previously published an analysis of multiple sources of uncertainty 
in the receiver operating characteristic (ROC) assessment and comparison of diagnostic modalities. The analysis assumed 
that the components of variance were the same for the modalities under comparison. The purpose of the present work is 
to obtain a generalization that does not require that assumption. 

Materials and Methods. The generalization is achieved by splitting three of the six components of variance in the previ- 
ous model into modality-dependent contributions. Two distinct formulations of this approach can be obtained from alter- 
native choices of the three components to be split; however, a one-to-one relationship exists between the magnitudes of 
the components estimated from these two formulations. 

Results. The method is applied to a study of multiple readers, with and without the aid of a computer-assist modality, 
performing the task of discriminating between benign and malignant clusters of microcalcifications. Analysis according to 
the first method of splitting shows large decreases in the reader and reader-by-case components of variance when the 
computer assist is used by the readers. Analysis in terms of the alternative splitting shows large decreases in the corre- 
sponding modality-interaction components. 

Conclusion. A solution to the problem of multivariate ROC analysis without the assumption of equal variance structure 
across modalities has been provided. Alternative formulations lead to consistent results related by a one-to-one mapping. 
A surprising result is that estimates of confidence intervals and numbers of cases and readers required for a specified con- 
fidence interval remain the same in the more general model as in the restricted model. 

Key Words. Receiver operating characteristic (ROC); components-of-variance; jackknife; bootstrap. 
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The field of random-effects receiver operating characteris- 
tic (ROC) analysis has made important advances during 
the past decade. Its major applications include the assess- 
ment of modalities for diagnostic imaging and computer- 
assisted diagnosis (CAD) and the comparison of compet- 
ing diagnostic modalities. A particularly important para- 
digm is the multiple-reader, multiple-case (MRMC) 
approach in which every reader reads every patient case. 
This is the so-called reader study that allows for a proper 
accounting of both reader and case variance and thus pro- 
vides estimates of uncertainties of ROC parameters that 
are said to be "generalizable to a population of readers as 
well as to a population of cases." This paradigm was first 
modeled by Swets and Pickett in 1982 (1). Dorfinan, Ber- 
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baum, and Metz (DBM) later provided a more flexible 
theoretical and also more practical solution to the MRMC 
problem (2). Their use of a general linear model together 
with "jackknife" resamphng allowed the appUcation of 
standard analysis-of-variance (ANOVA) techniques. Their 
approach and several alternatives were discussed at a 
1993 symposium, and the proceedings were published in 
a supplement to this journal (3). 

Beiden, Wagner, and Campbell (BWC) have recently 
provided a review of some of the issues in random-effects 
ROC analysis, together with an alternative solution to the 
MRMC problem (4). The BWC analysis includes not only 
the estimation of uncertainties in performance estimates in 
the MRMC paradigm but also a method to uniquely de- 
compose these uncertainties into contributions in a com- 
ponents-of-variance model (2,4,5). These components are 
referred to as the "variance structure" of the problem and 
include the case variability, the reader variability, various 
interactions among cases, readers, and modalities and, 
finally, experimental replication error. The BWC alterna- 
tive to previous solutions involves the analysis of a set of 
population experiments in terms of the model compo- 
nents. In any realistic clinical context, such population 
experiments are not possible. The practical solution is to 
replace the set of population experiments with the set of 
corresponding bootstrap resampling experiments on the 
available finite data set. This leads to a system of linear 
equations that may be solved for estimates of the compo- 
nents of variance (ie, the sources of randomness). In turn, 
one then obtains estimates of the confidence intervals of 
interest, as well as the ability to size a pivotal study from 
a pilot study. 

In the previous work, we followed the model and as- 
sumption of DBM, namely, that the reader and case vari- 
ances and their interaction for one modality are so similar 
to those for the other modality that they can be assumed 
to be equal. A central goal of CAD and other evolutions 
in imaging technology, however, is to create new modali- 
ties that will outperform older ones—in ways that include 
reducing the magnitude of these components of variance. 
A comparison of the performance of such new and older 
technologies will therefore require a more general model. 

In the present article, we extend our previous work to 
the more general case of unequal variance structures 
across two modalities under comparison. We will show 
how to solve for estimates of the variance structure for 
this more general MRMC paradigm. In the next section, 
we present one formulation of a solution to this estima- 
tion problem. An alternative formulation is presented in 

the Appendix. Our analysis is applied to the study of 
Jiang et al (6), in which unaided readers of suspicious 
mammographic clusters of calcifications were compared 
with readers who used a CAD modality as an adjunct. In 
a companion article (7), we analyze the uncertainties in 
the estimates of the variance structure. 

MATERIALS AND METHODS 

Following DBM (2), we analyze the MRMC paradigm 
within the fi-amework of a general multivariate linear 
model for ROC parameter estimates. We will use the 
ROC area parameter, A^ (dropping the z for simplicity), to 
exemphfy the model; the model is nevertheless applicable 
to any other ROC model parameter or accuracy index. 
For completeness, we repeat the multivariate linear model 
for an ROC accuracy index, A, used by DBM: 

Aijb, = l^i + 0 + ct + {mr)ij 

+ {mc)it + {rc)j^ + {mrc)ijk + Zy^, (1) 

where i indicates a particular imaging modality, j denotes 
a particular image reader, A: is a particular case sample, 
and n is a particular repHcation of the experiment. (The 
index for case sample, k, is included in this model be- 
cause DBM studied jackknife pseudo-values.) The term ix; 
represents the contribution of modality i to the expected 
value of the accuracy index, while the remaining terms 
are independent zero-mean random variables. The terms 
with a single index are the reader and case contributions 
to the variability, with variances a^ and a?, respectively. 
The terms with two subscripts represent the two-way in- 
teractions between modality and reader, modality and 
case, and reader and case, with variances o^„ <^c. and 
cr^c, respectively. The term with three subscripts repre- 
sents the three-way interaction among modality, reader, 
and case, with variance a^rc- The last term is a pure error 
term in experimental reproducibility, with variance of. 
For the case where multiple-reader experiments are con- 
ducted but readers do not independently repeat their read- 
ings, the last two terms, with variances cr^rc and of, are 
inseparable, and we combine them into a single term with 
variance of. 

A major distinction in apphcations of this model is 
that between random and fixed factors. A random factor 
is one that—on rephcation of the experiment—is drawn 
independently from a specified population; a fixed factor 
is one that remains unchanged on replication. As written 
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in Equation (1), modalities are considered fixed factors, 
while readers and cases are random factors. Finally, we 
note that it will not be necessary for the present article to 
invoke assumptions of normality. 

The model of Equation (1) assumes that the variance 
structure is homogeneous across modalities. Our present 
interest, however, is the case in which this structure 
changes across modalities. A parsimonious model for this 
case and the application where readers do not indepen- 
dently repeat their readings can be obtained by making 
the reader, case, and reader-by-case interaction terms a 
function of modahty (/), respectively, r/i). ^^(0, (rc)jk{i). 
It can be written as 

Aijh, = IJ-i + nii) + Ctii) + {mr)ij 

+ {mc)ik + {rc)ji,{i) + eyi. (2) 

The two-way interaction terms involving modality m 
and readers r (or cases c) carry information related to the 
reader (or case) correlation across modalities; they do not 
require generalization. (All else being equal, the interac- 
tion strength is higher when the correlation is lower, and 
vice versa.) However, for the case where readers indepen- 
dently repeat their readings, the three-way interaction 
term also would not be made a function of modahty, but 
the final term in Equation (1) would be. An alternative 
formulation, described in the Appendix, generahzes Equa- 
tion (1) in a different way. 

The variances produced by any Unear model, such as 
Equation (2), and that contribute to observations over re- 
peated experiments depend on which factors are held 
fixed and which are sampled randomly from a population 
when a particular ROC experiment is repeated. In refer- 
ence 4 we showed that, for the equal-variance model con- 
sidered there, it is possible to perform six population ex- 
periments, chosen from the family of 32 considered by 
Roe and Metz (5), that would allow one to solve for the 
six variance components in Equation (1), combining the 
final two components as just described. In the present 
work, we extend this approach to solve for nine compo- 
nents in the new model, using nine equations. 

We use the notation of Roe and Metz (5), where vari- 
ables to the left of the vertical bar in the subscript of an 
accuracy index are random factors, while those to the 
right are fixed factors. For example, suppose we consider 
replications of the experiment where readers R as well as 
cases C are drawn randomly from the population but the 
modahty M is a fixed factor. All six variance components 

for a given modality contribute to the observed variance 
in this experiment. This is stated by the following expres- 
sion, which, for the case of two modalities, provides two 
equations: 

var(A«c|M) = <^(M) + a?(M) + o^, 

+ ai, + of,(M) + a\. (3) 

When readers are also a fixed effect, the pure reader term 
and the modality-by-reader term do not contribute. That 
experiment and observed variance are given by 

var(Ac|M«) = o?(M) + o^„, + a^^XM) + a^,        (4) 

which also provides two equations when two modaUties 
are being studied. 

An experiment that is generally of most interest is the 
one in which two fixed modalities, M and M', are com- 
pared in terms of the ROC performance estimates ob- 
tained from randomly drawn reader and case samples. 
The population variance that is observed in that experi- 
ment can be calculated after subtracting two equations of 
the form of Equation (2) above: 

A,ni - Ajt|2 = [jLti - jnz] + [r/l) - 0(2)] 

+ [c,(l) - c,(2)] + ircj,{\) - rc,.,(2)] 

+ \fnrij - mr2J] + [mcik - mcjj 

+ [e,i|i - ^jk\2l (5) 

The first term in square brackets on the right-hand side is 
not a random variable, and so it conti-ibutes no variance. 
The variance of the next term in square brackets involves 
the correlation of r/1) and r/2). In the present model, we 
take these components to be different in magnitude but 
perfectly correlated, that is, r/1) = 7r0(2)> where jr is a 
constant. (We treat the pure case and reader-by-case com- 
ponents similarly.) Thus, 

var[r,(l) - r,(2)] = [cr/l) - cr,(2)?. (6) 

This approach is consistent with the interpretation that the 
reader component was originally not a function of modal- 
ity for the equal-variance model of Equation (1) and thus 
could be thought of as perfectly correlated across modali- 
ties in this special case to which the present model degen- 
erates. More generally, of course, the reader variation 
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may not be perfectly correlated across modalities. How- 
ever, the flexibility to include arbitrary correlations of 
readers (or cases) across modalities is achieved in the 
general linear model as used here through the presence of 
the interaction terms. (For split-plot designs, however, 
where the readers [or cases] are drawn independently for 
the two modalities [8], the present model would be modi- 
fied to set the reader [or case] correlation across modality 
to zero.) 

By similar steps, the variance of the complete differ- 
ence expressed by Equation (5) can then be written as 

given in BWC (4). When necessary to distinguish be- 
tween models, we shall use the presubscript A to refer to 
components in the BWC model of reference 4 and the 
presubscript B to refer to components in the model de- 
scribed up to this point in the present article. (Compo- 
nents of variance in the alternative formulation described 
in the Appendix will be denoted by a presubscript C. 
Otherwise in this article, the components will refer to the 
present model, model B.) For example, equating Equation 
(8) as written above to the corresponding version of this 
for the equal-variance case yields 

\ai{AKc\M - ARC\M') = 2(c7^, + o^c + <^) 

+ iaXm - aXM')f 

+ {(JXM) - crXM')f 

+ (cr„(M) - CTrAM')?. (7) 

One similarly obtains the following results for the other 
experiments that are required in order to solve for all of 
the variance components in this model: 

\Bx{Ac\RM - AC[R'M) = 2io^rc{l^ + oi). 

+ 2(oi, + o^) 

+ {aXm - (To{M')f. 

(8) 

var(Ac|RM - AC|RM') = 2(a^c + o^) 

+ {(xm - cTXM')f 

+  {(TrXm - CTrc(M'))\ (9) 

var(Ac|RM - ^CIR'A/O = o^c(A^) + <^rM) 

(10) 

UUD + X(2)]/2 + ,0^ = X + AO^.      (11) 

The average on the left-hand side of this equation results 
from the fact that in BWC (4) the observable quantity 
was taken to be the average over the fixed effect M, and 
thus we average over the two equations implied by Equa- 

tion (8). 
By repeating this exercise with Equations (4) and (3), 

and taking differences with Equation (11), two additional 
expressions parallel to Equation (11) can be found: one in 
which all versions of a? replace the corresponding ver- 
sions of ofc and all versions of o%c replace the corre- 
sponding versions of of, and another in which all ver- 
sions of of replace the corresponding versions of of^ and 
all versions of o^r replace the corresponding versions of 
o^. The complete parallel of these expressions with Equa- 
tion (11) becomes apparent on recalling that of includes 
o^ 

Another set of relationships can be found by first per- 
forming a similar exercise on Equations (10) and (4). The 
difference of the two results yields 

Notice that Equations (3), (4), and (8) each describe two 
independent experiments (M = 1 or 2). The system of 
nine equations represented by Equations (3), (4), and (7)- 
(10) then expresses nine observable variances as a multi- 
variate quadratic equation in the square roots of nine vari- 
ance components. These equations reduce to the linear 
expressions in our previous work (4) for the case where 
the variances are equal across modalities. 

The left-hand sides of Equations (3), (4), and (7)-(10) 
are observables that are independent of any model. Thus, 
we may equate the right-hand sides just derived for the 
present model with the corresponding right-hand sides 
that follow from the model for the equal-variance case 

A(rt = BO-C(1)BO-C(2). (12) 

Similar results follow for the components of and ojc- 
These expressions will be useful as a check on the resuhs 

below. 
We now proceed as in our previous analysis (4) where, 

in practice, we replace a given population experiment 
with the corresponding bootstrap experiment. (Details of 
the statistical bootstrap are reviewed in reference 4, based 
on Efron [9] and Efron and Tibshirani [10].) 

The nonlinear system, Equations (3), (4), and (7)-(10), 
can be solved for the unknown variance components by 
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Components of Variance in Equal- and Unequal-Variance 
Models (All Values x 10-") 

Equal 
Variance 

Unequal Variance 

Component Modality 1 Modality 2 

c 7.31 7.66 6.98 

r 7.78 17.84 3.39 

re 2.11 10.92 0.41 

mc 4.43 4.42 * 

mr 7.72 4.48 

mrc/e 14.00 10.45 

'Ellipses indicate no new parameter; these components do not 
split in the new model. 

numerical iteration. We first write the variance compo- 
nents as a vector a, whose transpose, T, is 

((7)^=(o-,(l), o-,(2), crXD, (rX2), 

(^mc, OTmn 0;^{l), CT.X^), (T^. (13) 

Each of the nine equations is then rearranged such that 
the vector a is on the left-hand side of the system; the 
right-hand side is then the remaining nonlinear operation 
on a, which we call /. The system can then be written as 

o- =/(<7). (14) 

We use a method of simple iteration to solve this system, 
with the initial estimate being taken to be the solution of 
the linear system that results when the two structures are 
equal. This system of quadratic equations can be shown 
to have only one physically meaningful solution set, and 
thus the problem is well defined. 

RESULTS 

Application to CAD 

We use the study of CAD by Jiang et al (6) to exem- 
plify this approach. These authors compared the perfor- 
mance of 10 radiologists—unaided versus with the aid of 
a computer-assist modality—reading mammograms from 
104 patients with clustered microcalcifications. The truth 
state for these patients was established with biopsy (46 
malignant, 58 benign cases). ROC analysis for individual 
readers and also their average performance within the 
MRMC paradigm and model of DBM were pubUshed in 
reference 6. Here we use the methods described above to 
solve for the components of variance in these MRMC 

experiments, both in terms of the previous model that 
assumes equal variance structure across modalities and in 
terms of the new model that does not make that assump- 
tion. 

Components of Variance 
In the Table, we present the components of variance 

according to our present analysis within the two models; 
the first model assuming equal variances across modalities 
and the second model assuming unequal variances. Here, 
the first modality (modality 1) refers to the combination 
of mammographic images and unaided readers; the sec- 
ond modality (modality 2) refers to the combination of 
mammographic images and readers aided by the comput- 
erized feature extraction, fusion, and rating of probability 
of cancer described in reference 6. 

The following observations can be made from the Ta- 
ble. In the equal-variance model, the reader component of 
variance and the case component of variance have similar 
strengths. The patient component of variance, which can 
be interpreted as the range of case difficulty as repre- 
sented by the finite sample, hardly changed when we 
went to the unequal-variance treatment. The reader com- 
ponent of variance, which can be interpreted as a range of 
reader ability, "splits" into two quite unequal components 
in the unequal-variance model. Without the assist of 
CAD, the reader component is now seen to be much 
greater than the case component; the addition of CAD is 
seen to reduce this component more than fivefold. The 
reader-by-case component also splits into two quite un- 
equal components, with a more than 25-fold reduction 
after the addition of CAD. Larger values of this compo- 
nent imply that the range of sampled case difficulty de- 
pends on the particular reader (or by the symmetry of that 
component, that the range of reader skills depends on the 
case); smaller values imply less such dependence. Thus, 
we take this splitting to indicate that the addition of CAD 
in the study of reference 6 almost eliminated the depen- 
dence of the range of case difficulty on the particular 
reader in that study (or, synmietrically, that it almost 
eliminated the dependence of the range of reader skills on 
the case). 

For later reference (companion article, reference 7) 
these results are shown graphically in Figure 1, to- 
gether with error bars on the model results that repre- 
sent ± 1 standard deviation. In the companion article 
(7), we provide the analysis of uncertainty in these re- 
sults. In a few words, the error bars are obtained by 
using a resampling technique known as the jackknife- 

609 



BEIDEN ET AL Academic Radiology, Vol 8, No 7, July 2001 

0.0020 

0.0015 
o 
o. 
S 
o 
U 

o 
c 

0.00 

.5 0.000.«> 

0.0000 

a. 
Figure 1. (a) Variance components c (case), r (reader), and re (reader-by-case) in tlie present analysis of the study in reference 6. 
Vertical bars represent mean estimates, ± 1 standard deviation estimated with the method of reference 7. Unsplit components (to 
the left in each set of three) are estimated with the model of reference 4 (denoted model A). Splitting components (the pair to the 
right in each set) are estimated with model B of the present analysis (ie, not assuming equal variance structure across modalities). 
(b) Variance components mc (modality-by-case), mr (modality-by-reader), and e (residual error) in the present analysis of the study 
in reference 6. These three components shift rather than split in going from model A of previous work to model B of the present 
article. 

after-bootstrap (10), followed by linear propagation of 
variance for the model of equal variance structure or 
its modification for the model of unequal variance 
structure. 

We note also that the model components in the un- 
split model are indeed the geometric mean of the 
model components in the split model, consistent with 
the theoretical analysis of the model. Thus far, these 
observations are for the splitting components of the 
model. We now turn to the components that are not 
split in the new model. 

In the new model, the reader-by-modality interaction 
changed to accommodate the new values of reader 
variance. There was little change in the case-by-modal- 
ity interaction, as expected from the small change in 
the case component. Finally, the last component, or 
effective error term, is reduced when going to the new 
model. (The effective error term includes the contribu- 
tion to the variance due to reader inconsistency that 
was called "jitter" in reference 11 and subsequent par- 
lance.) 

The shifts in the unsplit model terms that accompany 
the move to the more elaborate model can be accounted 
for by simple algebraic relationships. The change in the 
effective error term just noted, that is, the difference be- 
tween the solution to the linear system, ^of, and the cor- 
responding solution to the quadratic system, gof, is sim- 
ply related to the change in going from the solution to the 
linear system, ^o^c- to the solutions to the quadratic sys- 

tem, flofcCl). B<7^c(2). The relationship is found from Equa- 
tions (11) and (12): 

[,cr?,(l) + fiofX2)]/2 - BO-.(l)i,o-.(2) 

= [str,,(l) - B(r,,(2)]V2 

-A- B^.. (15) 

That is, the shift in the nonsplitting component is the dif- 
ference of the geometric mean and the arithmetic mean of 
the splitting components. Two additional expressions ex- 
actly parallel to Equation (15) can be found: one in which 
(Tc replaces (7^ everywhere on the left-hand side and o^^ 
replaces of on the right-hand side of Equation (15), and 
another in which (r^ replaces cr^ everywhere on the left- 
hand side and o^r replaces of on the right-hand side of 
Equation (15). (Recall again that o^ contains (fi^rc^ 

DISCUSSION 

Inference and Experimental Design 

An important consequence of the model and analysis 
above is that the present approach does not change the 
confidence intervals on the difference of ROC parameters 
between competing modalities, compared with our previ- 
ous work (4). These confidence intervals are found from 
the single-bootstrap experiment represented by the left- 
hand side of Equation (7). The right-hand side of this 
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equation is new in the present model, and thus the inter- 
pretation is new. The input to the equation represented by 
the left-hand side has not changed, however. 

The new model also does not change the design of a 
pivotal study from results of a pilot study that was de- 
scribed in our previous analysis (4). In that analysis, the 
variance components mc, mr, and e were the only contrib- 
utors to the estimation of the numbers of cases and read- 
ers required for a specified confidence interval on the dif- 
ference of ROC parameters between competing modalities, 
but in the present analysis there are nine contributions to 
tiiat estimation task (right-hand side of Equation [7]). Al- 
though the former three terms may be reduced in the new 
model, inspection of Equation (15) and its analogues 
shows tiiat this reduction is exactiy offset by the remain- 
ing terms of Equation (7). Thus, the design of experi- 
ments according to the previous model and model param- 
eters obtained in reference 4 is unchanged, if only the 
difference in performance between two modalities is of 
interest. However, the partitioning of the variances ob- 
tained in the present work provides additional insight for 
the entire family of possible experiments embraced in 
Equations (3), (4), and (7)-(10). 

Since confidence intervals on differences between mo- 
dalities and associated inferences based on them in our 
analysis do not change when going to the new model, it 
would be reasonable to expect that inferences based on an 
elaboration of the DBM analysis to the case of unequal 
variance structures across modalities would also remain 
unchanged. We have argued in reference 4 that our analy- 
sis is a distiibution-free generalization of the approach of 
DBM. Since inferences based on this generalization re- 
main unchanged when the variance structure is allowed to 
change across modalities, inferences based on an elabora- 
tion of DBM (ie, use of the jackknife rather than the 
bootstrap) might also be expected to remain unchanged. 
In the Appendix, we present an alternative to model B 
that contains no expressions nonlinear in the variance 
components and could thus be readily incorporated into 
the method of DBM. We refer to this alternative as model 
C. In the approach of the present article, inferences and 
design of experiments based on model C are identical to 
those based on model B, and they are thus identical to 
those based on BWC (4) when estimation of differences 
between modalities is the object of the experiment. 

Generality of the Present Work 
An anonymous reviewer (December 2000) has sug- 

gested that one could address the present problem by a 

natural extension of the DBM approach, using jackknifed 
pseudo-values with die PROC MIXED routines in the 
SAS software package (12). This will lead not only to 
estimates of the confidence intervals of interest but also to 
maximum-likelihood (ML) or residual (often called re- 
stricted) maximum-likelihood (REML) estimates of the 
variance components. The approach of using REML to 
obtain estimates of the variance components had also 
been mentioned to one of us (R.F.W.) previously (D.D. 
Dorfman, oral communication, 1999). We agree that this 
is indeed a reasonable alternative to the present approach, 
but it does not address the level of generality we seek 
here. We summarize this issue as follows. 

The BWC approach (4), and its extension to the case 
of unequal variance stiiictures as provided above, is built 
on the same general components-of-variance model used 
by DBM. However, it replaces the jackknife and ANOVA 
with a family of bootstrap resampling experiments and a 
corresponding system of equations that lead to exphcit 
solutions for the variance components and confidence in- 
tervals of interest. It is thus a distribution-free approach, 
whereas classic ANOVA is based on the assumption of 
normality for all the components. (REML also requires 
assumptions for the relevant disti-ibutions.) 

An additional feature of the present approach was cited 
in reference 4. The bootstrap includes not only the leave- 
one-out jackknife, but also more general leave-X-out 
terms where X is greater than one, among the other kinds 
of terms that sampling with replacement generates. For 
the case where the statistic of interest is Hnear, all of the 
terms that can contribute to the calculation of that statistic 
on a single-bootstrap pass are already included in the 
jackknifed data sets; this is not true of nonlinear statistics, 
that is, statistics that involve interactions between the data 
points two or more at a time (10). The nonparametric 
estimate of ROC area, for example, includes sums of 
rankings of data points two at a time (13,14) and thus 
falls into the latter category. Thus, the leave-one-out jack- 
knife does not in general capture all of the information in 
the data regarding this statistic. Nevertheless, only small 
differences were found in reference 4 between the DBM 
and BWC methods for the variance structures and sam- 
ples sizes studied there. Also, in our (unpublished) Monte 
Carlo simulations of bootstrap and jackknife estimates of 
variance for the nonparametric measure of ROC area, 
small differences between mean estimates were seen, but 
only when the number of patients per class was smaller 
than 25. This issue bears further investigation, including 
the case of parametric accuracy measures. 

611 



BEIDENETAL Academic Radiology, Vol 8, No 7, July 2001 

Finally, we emphasize a general point about the philos- 
ophy of the bootstrap made by Efron and Tibshirani (10). 
The empirical distribution function is the nonparametric 
ML estimate of the population distribution. In this sense, 
the nonparametric bootstrap provides "nonparametric ML 
estimates" in the language of reference 10, or "distribu- 
tion-free" ML estimates in language that we and others 
prefer. The system of equations used here to propagate 
those estimates back into estimates of the variance com- 
ponents will thus also lead to distribution-free ML esti- 
mates. (This follows since the ML estimate of a function 
of a parameter of interest is that function of the ML esti- 
mate of the parameter.) For all of the above points, we 
would argue that the approach of reference 4 and its 
present extensions are the most general proposed so far 
for the family of problems under consideration here. 

CONCLUSIONS 

The present approach to random-effects ROC analysis 
extends our previous work (4) to the case where the vari- 
ance structure may change across modalities. An example 
comparing unaided readers with readers assisted by CAD 
showed that both the reader and the reader-by-case com- 
ponents of variance were greatly reduced after the addi- 
tion of CAD. These results are consistent with previous 
expectations regarding that study (15), but such results 
had not been previously isolated quantitatively. 

Several comments regarding the future are in order. 
The present model provides a quantitative framework for 
interpreting the variability in MRMC studies in terms of a 
model of the components of that variability. It may thus 
offer the opportunity to contribute to the solution of sev- 
eral outstanding problems in the field of medical image 
science. The first of these is the connection between 
physical performance measurements on diagnostic imag- 
ing systems, that is, measurements of "image quality," 
and measures of clinical outcome such as the ROC curve 
(16,17). The variabiUty observed at present in mammo- 
graphic imaging (18), to take just one example, may mask 
the gains to be expected from evolution of the physical 
performance of mammographic imaging systems. The 
present approach may make it possible to peel back this 
mask with an efficient clinical experimental design. 

The ability to isolate the contributions to variabiUty in 
performance that arise from the reader from those that 
arise from the patient and the imaging system opens up 
new possibilities for imaging system optimization. The 
professional community of radiologists may be better able 

to quantitatively measure and fine-tune their training of 
readers, while the professional community of physicists 
and engineers of imaging systems may be better able to 
fine-tune their system designs, each with the appropriate 

focus and emphasis. 
Finally, the emergence of the field of computer-as- 

sisted reading of images adds another layer of complexity 
to the problem of assessing diagnostic imaging modaU- 
ties. The present work may contribute toward extending 
our understanding and optimization of the interface be- 
tween the imaging physics and human image readers to 
the further interface of these with computerized reading- 
assist modalities. 

APPENDIX 

The formulation described in the body of the present 
article models the situation where the variance structure is 
allowed to be unequal across modalities by spUtting the 
case, reader, and reader-by-case components in the gen- 
eral Unear model, that is, it makes them a function of mo- 
dality; it leaves the modahty-by-case, modality-by-reader, 
and modality-by-reader-by-case components unspht. An 
alternative to this model can be constructed by splitting 
the latter three components and leaving the former three 
components unsplit. We present the alternative model 
equations here, together with a demonsfration of a one-to- 
one correspondence between the two alternative models. 

In the alternative model, the modality-by-case, modal- 
ity-by-reader, and modality-by-case-by-reader terms are 
fiinctions of modality, i, and are written mc./O. mru^i), 
and (mrc)ijkii), respectively. These components are taken 
to be independent across modalities. The Hnear model of 
Equation (1) then becomes 

Aijkn = ju./ + rj + ct+ {rc)jt + (mr),/0 

+ imc)ii,(i) + {mrc)ijk{i) + Zoi„(0-       (Al) 

The strengths of the components of variance of this 
model will be distinguished from those of the models dis- 
cussed in the body of the present article by the addition 
of a presubscript C. Here, as earlier, we consider the case 
of no replication and thus set coi(0 = cOmrc(0 + cO^CO- 
Equations (3), (4), and (7)-(10) for the observable vari- 
ances in terms of the model components of variance for 
the case of no replication then become 

varCA^ciM) = c<^ + cO? + cf^tciM) 

+ coiXm + co'rc + coim,      (A2) 
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var(Ac|M«) = cO? + coiM + c<^rc + c^^M^       (A3) 

var(ARc|M " ^RC\M) = cf^mi^) + coir(2) 

+ coicd) + cc^c(2) 

+ co^(l) + coi(2),        (A4) 

var(Ac|«w - ^C\R'I^ = ^cO^rc + 2cO^(M),        (A5) 

var(Ac|ffM - AC|RM') = coid^) + c(^c(2) 

+ coi(l) + coli2),      (A6) 

var(A, C|fiM Ac\R'M') = '^cO^rc + cOdc(l) 

+ coiX2) + co^d) + ca^(2),    (A7) 

As with Equations (3), (4), and (7)-(10), these equations 
also reduce to the expressions in our previous work (4) 
for the case where the variances are equal across modali- 
ties. Notice, however, that Equations (A2)-(A7) are now 
linear in the model components. Thus, they may be 
solved for these components by linear algebra in the same 
manner as was used in our earlier work (4). 

As noted earlier, the left-hand sides of Equations 
(A2)-(A7) are observables that are independent of any 
model. Thus, we may equate the right-hand sides for the 
present model with the corresponding right-hand sides of 
Equations (3), (4), and (7)-(10) to discover the relations 
between the components of variance in the two models. 
For example, equating the right-hand sides of Equation 
(8) and Equation (A5) yields 

sO^rciM) + Boi= c(rtc + cO-liM), (A8) 

where, as above, the presubscript B refers to the model in 
the body of the present article. Similarly, equating the 
right-hand sides of Equation (4) and Equation (A3), and 
subtracting Equation (AS) yields 

The complete parallehsm of Equations (A8)-(A10) may 
be more apparent on recalling that cr^ in all models here 
contains a^rc- These three equations show that changing 
from model B to model C changes the distribution of 
variance strength within the three compartments defined 
by these three equations, but it does not redistribute vari- 
ance strength across these three compartments or equa- 
tions. Continuing in this way, we may solve for the com- 
ponents of model B in terms of those of model C and 
vice versa, as we now show. 

Equating the right-hand sides of Equations (10) and 
(A7), equating the right-hand sides of Equations (4) and 
(A3), and subtracting yields 

cC7^=BOr,(l)BCr,(2). (All) 

Finally, the equivalence of the right-hand sides of Equa- 
tions (9) and (A6), and of Equations (7) and (A4), leads 
in a similar way to 

and 

C0ic= BO-r.(l)BO-rc(2) 

coi = BO-X1)BO-X2). 

(A12) 

(A13) 

sO^,{M) + BOL=C0^C + c<jiciM), (A9) 

Thus, from Equations (A8)-(A10) and Equations (All)- 
(A13), we have also 

coiXM) = X(M) + soir - B0-Xl)flC^r(2), 

coiXM) = BO^ciM) +Boic- BO-.(1)BO-,(2), 

cC7i(M) = BO^rciM) + X - B<rrX 1 ).o-..(2). (A14) 

Equations (A12)-(A14) express the components of model 
C in terms of the components of model B. The relation- 
ships in the other direction may be obtained as follows. 

The first equation of the set. Equation (A14), provides 
two equations whose difference is 

and equating the right-hand sides of Equation (3) and 
Equation (A2) and subtracting the results in Equations 
(A8) and (A9) yields 

BOJiM)  + Boir =c(rt+ coiriM). (AlO) 

X(l)  - B0'r{2)  = cOirW  ' cOir(2). (A15) 

The square of Equation (A13) may be used to rewrite the 
second term of Equation (A15) in terms of the first (and 
vice versa), providing a quadratic equation in Bof(l) (or 
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Figure A1.   (a) Variance components c (case), r (reader), and re (reader-by-case) in the analysis of the study m reference 6, estimated 
with model A of reference 4 (vertical bars to the left in each pair) and model C of the Appendix (vertical bars to the nght in each pair). 
Vertical bars represent mean estimates, ± 1 standard deviation obtained with the methods of reference 7. Note that these three compo- 
nents remain unchanged in going from model A to model C. (b) Variance components mc (modality-by-case), mr (modality-by-reader), 
and € (residual error) in the analysis of the study in reference 6. Vertical bars represent mean estimates, ± 1 standard deviation esti- 
mated with the method in reference 7. Unspiit components (to the left in each set of three) are estimated with the model of reference 4 
(denoted model A in the present article). Splitting components (the pair to the right in each set) are estimated with model C of the Ap- 

pendix. 

B(T}(2)). The solutions are 

BO^rW = [(coiy + ibf^n'' + b/2,        (A16) 

sc4i2) = [icoir+{b/2yr-b/2, 

where 

b = cairW- cO-lri2). 

The form of Equation (A16) shows that there is only one 
nonnegative solution. Parallel solutions of identical form 
can be found in the same way for BO?(A/) and s^^rdM). 

Finally, expressions for the nonsplitting comporlents in 
model B may be obtained in terms of the components in 
model C by combining Equation (A16) and its analogs 
with Equations (A8)-(A10). 

The present exercise demonstrates a one-to-one map- 
ping between model C and model B. The selection be- 
tween them thus appears to be a matter of intuitive appeal 
or taste. An appealing feature of model B is that the com- 
ponents that are split correspond to populations (cases, 
readers, readers-by-cases) that seem intuitively natural, 
and thus model B is pedagogically attractive. On the 
other hand, the splitting employed by model C may be 
more intuitive for some, and an attractive feature of this 
model is the fact that the equations to which it leads. 
Equations (A2)-(A7), remain linear in a set of indepen- 

dent variance components. As a consequence, it is suit- 
able for incorporation into conventional ANOVA (as in 
DBM [2], for example). (The feature of linearity is not an 
issue for the multiple-bootstrap approach; the choice of 
model B versus model C leads to only small differences 
in the computer coding that is required in that approach.) 
Finally, model C requires no adjustment to accommodate 

split-plot designs. 
In the same manner as above, we may also show that 

the interaction components in model A are related to 
those in model C as simple arithmetic averages: 

X.= [cC^Jl) + c^».X2)]/2, (A17) 

and similarly for ai^ and ai. Now, it is Equation (A4) 
that determines the confidence intervals on the difference 
of ROC accuracy measures across two fixed modalities 
when readers and cases are taken as random effects. The 
left-hand side of Equation (A4) describes the underlying 
population or bootstrap experiment. The right-hand side is 
its decomposition according to model C and is propor- 
tional to the sum of three averages, namely, the right- 
hand side of Equation (A17) and the analogous terms for 
the (Tic and of components. The averaged components are 
precisely the terms that contribute in model A, the equal- 
variance model. Thus, as far as the confidence interval of 
interest here is concerned, no new issues arise when mov- 
ing from model A to model C. (This is the same conclu- 
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sion found in the body of the article when moving from 
model A to model B.) 

The example of the present article may be analyzed in 
terms of model C of this Appendix. The results are 
shown in Figure Ala and Alb. The particular details of 
these figures are different from those in Figure la and lb 
of the text, because the absolute levels of the quantities 
that are split differ across the two models. However, be- 
cause of the one-to-one correspondence between the two 
models, there is no fundamental difference between the 
conclusions drawn from either set of figures. 

DEDICATION 

The authors dedicate this work to the memory of 
Donald D. Dorfman, PhD, of the University of Iowa, who 
passed away on April 15, 2001. Don's singular contribu- 
tions to this field have always been an inspiration to the 
present authors. The field will not be the same without 
him. 
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Introduction 

Breast cancer is the most frequently diagnosed cancer in women and the second 
leading cause of cancer mortality in women (1). Screening mammograms are 
effective in detecting asymptomatic breast cancers that can be treated effective- 
ly. However, mammography faces challenges to increase sensitivity further and 
to reduce the number of false-positive mammograms (2). Computer-aided diag- 
nosis (CAD) is proposed to help improve radiologists' diagnostic performance in 
radiology in general and in mammography in particular. In CAD, a radiologist 
interprets mammograms that are also analyzed by a computer that detects poten- 
tial breast lesions or differentiates breast lesions as malignant or benign. The 
radiologist's interpretation of the mammograms and his or her diagnosis are 
enhanced by the computer analysis of the same mammograms. 

CAD consists of two essential components: an automated computer technique 
that analyzes the mammograms, and the consideration of the computer analysis 
results rendered by a radiologist that effects the radiologist's diagnostic decision 
making. Both components are important. A high-performance computer tech- 
nique is the essence of any CAD method, and the effect of this computer tech- 
nique on radiologists' diagnostic decision-making is equally important. An anal- 
ogy may be drawn between CAD and the current image-based practice in diag- 
nostic radiology. The computer analysis is analogous to the high-quality images 
that must be interpreted by highly skilled radiologists whose interpretation of the 
diagnostic images determines diagnostic accuracy. 

CAD can be broadly described as either for the purpose of detection or for the 
purpose of classification. Computer detection techniques identify potential 
lesions in mannraiograms, such as masses and clustered microcalcifications, to 
help radiologists avoid missing subtle lesions that may be small cancers. 
Computer classification techniques classify lesions into specific diagnostic cate- 
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gories, such as malignant versus benign, to help radiologists 
better analyze the lesion once it is detected and decide on an 
appropriate approach for management. In this report, we 
focus on computer-aided classification of breast lesions. The 
purpose of this report is to review the evidence in the litera- 
ture supporting a potential clinical role of CAD in the diag- 
nosis of malignant and benign breast lesions. 

Computer Classification of Breast Lesions 

Several computer techniques that classify breast lesions as 
malignant or benign have been reported in the literature. 
These techniques use a common general approach that 
involves the extraction of lesion features from mammograms 
and an analysis of the lesion features using a statistical clas- 
sifier. This is loosely modeled after the interpretation process 
used by the radiologist (3,4). Table I lists the image features 
that we extracted from mammograms of clustered microcal- 
cifications. These image features correlate qualitatively with 
radiologists' perceptual experience and this correlation 
serves as a basis for the use of these image features in our 
computer technique to classify microcalcifications as malig- 
nant or benign (5). These image features were analyzed and 
merged into an estimate of the lesion's likelihood of malig- 
nancy in our computer technique with an artificial neural net- 
work. Other classifiers such as linear discriminant analysis 
(LDA) have also been used in other techniques (6,7). 

Evidence of Potential Clinical Benefits 

To date, the most direct evaluation of computer-aided diag- 
nosis of malignant and benign breast lesions is made in 
observer performance smdies conducted retrospectively in 
research laboratories. In these studies, radiologists review a 
set of mammograms without the computer aid and record 
theu- diagnostic performance. They then review a set of 
mammograms with the computer aid and compare their diag- 

Table I 
List of Computer-Extracted Image Features for Classification of Clustered Microcalcifications 
as Malignant or Benign 

No. Computer-Extracted Image Feature 

1 Area of a cluster (i.e., a group of multiple microcalcifications) 

2 Circularity of a cluster 

3 Number of microcalcifications in a cluster 

4 Average microcalcification area 

5 Average effective microcalcification volume (area times effective 
thickness, effective thickness is calculated from contrast) 

6 Relative standard deviation in effective microcalcification volume 

7 Relative standard deviation in effective microcalcification thickness 
(contrast) 

8 Shape-irregularity of microcalcifications 

nostic performance to their unaided performance. These 
studies simulate the clinical use of CAD and provide evi- 
dence of the potential effects of CAD on improving radiolo- 
gists' diagnostic performance. The results of these studies 
are more convincing than a comparison of the computer per- 
formance alone and the performance of radiologists because 
this latter comparison does not represent how CAD will be 
used clinically. We review an observer performance study 
that we have performed in our laboratory and describe the 
results of a few other studies. 

An Observer Performance Study 

We performed an observer study to evaluate the effects of 
CAD in the diagnosis of malignant and benign clustered 
microcalcifications (8). Clustered microcalcifications lead 
to the diagnosis of approximately half of breast cancers. We 
used 104 cases of mammograms from a consecutive biopsy 
series of clustered microcalcifications. In 56 cases the 
microcalcifications corresponded to a malignant lesion and 
in 68 cases the microcalcifications corresponded to a benign 
lesion. Five attending radiologists and 5 senior radiology 
residents, none of whom had read the study cases prior to the 
study, reviewed the mammograms. The attending radiolo- 
gists read mammograms in their routine clinical practice for 
an average of 9 years (median 6, range 1-30 years) and for 
an average of 30% of their clmical work, and they read at 
least 1,000 cases of mammograms in the preceding year. 
The residents had limited experience in mammography from 
their residency training. Results from the attending radiolo- 
gists and residents were analyzed separately and those 
results were combined only when the differences were small. 

The mammograms interpreted by the radiologists consisted 
of the original films in the mediolateral oblique and cranial- 
caudal projections of both breasts and magnification views 
of the microcalcification cluster in the same projections. The 

microcalcification cluster was identified on 
all films by wax pencil marks so that the 
readers were not asked to detect these 
lesions. A sophisticated study design, 
sometimes referred to as a counterbalanced 
study, was used to minimize potential bias- 
es that can arise from radiologists reading 
the same images twice imder the unaided 
and the computer-aided reading conditions 
(9, 10). The readers read the entire set of 
mammograms twice in two reading ses- 
sions that were separated by 10-60 days 
(mean 30, median 35 days). In the first 
reading session, 5 readers read half of the 
cases without the computer aid and the 
other half of the cases with the computer 
aid.   In the second reading session, these 

To Characterize 
Microcalcification: 
Spatial distribution 

Spatial distribution 

Number 

Size 

Size 

Size uniformity 

Size uniformity 

Shape 
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readers read the images in the complimentary reading condi- 
tion. For the other 5 readers, the sequence of the reading 
conditions was exactly reversed. In the first reading session, 
these readers read the first half of the cases with the com- 
puter aid and the second half of the cases unaided. In the 
second reading session, they read the images in the compli- 
mentary reading condition. 

The radiologists reported two assessments after reading each 
case in each of the two reading sessions. They reported their 
confidence that the microcalcifications corresponded to a 
malignant lesion and these confidence data were used to 
compute ROC curves. They also reported their recommen- 
dation for patient management from the choices of (1) surgi- 
cal biopsy, (2) alternative tissue sampling, (3) short-term fol- 
low-up, and (4) routine follow-up. These lesion manage- 
ment recommendation data were used to calculate the sensi- 
tivity, specificity, and positive predictive value. The readers 
were told at the onset of the study that approximately half of 
the lesions were malignant and they were provided with 
example images with the computer aid to familiarize them 
with the use of the computer aid. 

Improvement in Diagnostic Accuracy 

We analyzed the results of our observer performance study 
and characterized the radiologists' diagnostic performance 
with receiver operating characteristic (ROC) analysis and by 
calculating the sensitivity, specificity, and positive predictive 
value associated with the radiologists' lesion management 
recommendations (11,12). For the ROC analysis, we used 
the summary performance indices of area under the ROC 
curve, A^ (13), and a partial area index that is considered to 
be more clinically relevant, 0.90^2 (14), that represents the 
area under a portion of the ROC curve with sensitivities 
above 90%. The ROC analysis and statistical significance 
test were done with the Dorfman, Berbaum, and Metz 
(DBM) method (15). 

Figure 1 shows the ROC curves of the radiologists as a group 
in the unaided and the computer-aided readings, and of the 
computer performance alone. A substantial improvement in 
the radiologists' diagnostic performance is apparent as a 
result of the use of the computer aid. The A^ value increased 
from 0.61 in the unaided reading to 0.75 in the computer- 
aided reading. This improvement was statistically highly 
significant (P < 0.0001). The partial area index, 0.90^2. also 
increased: from 0.05 in the unaided reading to 0.24 in the 
computer-aided reading (P < 0.0001, Student's t-test for 
paired data). Note that the computer performance alone was 
better even than the computer-aided radiologists. The A^ 
value of the computer performance alone was 0.80. This 
indicates that although the radiologists achieved substantial 
improvements in performance, they have not realized the full 

potential of gains in accuracy that was possible from the use 
of the computer aid. The ROC curves of the attending radi- 
ologists and the residents were similar, and the differences 
between their average A^ values were less than 0.01. 

From an analysis of the radiologists' lesion management rec- 
ommendation data, we found that the average sensitivity of 
the radiologists increased from 74% in the unaided reading to 
87% in the computer-aided reading (P = 0.0006). 
Simultaneously, their average specificity increased from 32% 
in the unaided reading to 42% in the computer-aided reading 
{P = 0.003). These increases in sensitivity and specificity 
resulted in an increase in the positive predictive value from 
46% in the unaided reading to 55% in the computer-aided 
reading. In terms of the number of patients that a radiologist 
made the correct diagnosis, use of the computer aid helped 
each radiologist, on average, to recommend biopsy for 6.4 
addition cancer cases and for 6.0 fewer benign lesions. 

0.0 

Riulicilojzisls 
(CAD) 

Radiologists 
(unaided) 

0.0 0.5 
False Positive Fraction (FPF) 

1.0 

Figure 1: Summary ROC curves often radiologists' interpretation of 104 
cases of mammograms containing clustered microcalcifications with 
respect to a malignant or benign diagnosis. The A^ values are 0.61 for the 
unaided reading and 0.75 for the CAD reading (P < 0.0001). As a reference, 
the computer's A^ value is 0.80. The operating points represent the biopsy 
recommendations made by the radiologists in the unaided (A) and the CAD 
(•) reading conditions. 

Reduction of Variability in Mammogram Interpretation 

The interpretation of mammograms is influenced by many 
sources of variations. Radiologists do not always agree with 
their colleagues in their interpretations of the same mammo- 
grams and they do not always agree with themselves in 
repeated blind interpretations of a single mammogram. Such 
variability in the mammogram interpretation may be sub- 
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stantial and it lowers the overall effectiveness of mammo- 
graphic screening for breast cancer (16-18). We analyzed 
the data of our observer performance study to see if CAD 
had an effect on reducing the variability of mammogram 
interpretation (19,20). 

We characterized variability in mammogram interpretation 
by calculating the agreement and disagreement among the 
radiologists in their lesion management reconmiendations, 
i.e., whether to recommend a biopsy. Agreement was char- 
acterized with the kappa statistic (21). Disagreement was 
characterized with the frequency of substantial disagree- 
ment, defined as a situation in which one radiologist recom- 
mended biopsy and another radiologist recommended rou- 
tine follow-up for the same lesion (16). The frequency of 
substantial disagreement was further calculated in two dif- 
ferent ways: in terms of a percentage of the lesions (i.e., 
patients) in which a substantial disagreement occurred 
between at least two radiologists who interpreted the 
patient's manmiograms (the per-patient frequency), and in 
terms of a percentage of all possible recommendation pairs 
made by any two radiologists who interpreted the same 
mammogram (the pairwise frequency). 

We found that use of the computer aid helped 
the radiologists to agree more frequently in 
their lesion management recommendations. 
The kappa statistic increased from 0.19 (95% 
CI 0.13 to 0.28) in the unaided reading to 
0.41 (95% CI 0.32 to 0.51) in the computer- 
aided reading. This improvement was statis- 
tically significant (P < 0.05). 

In addition, use of the computer aid also 
helped the radiologists to reduce the number 
of substantial disagreements in their lesion 
management recommendations (Fig. 2). In 
the unaided reading and calculating only the 
lesion management recommendations made 
by the 5 attending radiologists, the pairwise 
frequency of substantial disagreement was 
7% and the per-patient frequency was 23%. 
Use of the computer aid reduced these fre- 
quencies of substantial disagreement among 
the attending radiologists by 63%. This 
reduction was statistically significant for all 
cases combined and for cancer cases (P < 
0.04), but was not significant for benign j-jgure 2, 

frequencies by 28%. This reduction was statistically signif- 
icant only for all cases combined (/* < 0.04) and was not sig- 
nificant for the cancer cases or benign cases separately. 

In these calculations, the pairwise frequencies are smaller 
because they represent fractions of 4,680 pairs of recom- 
mendations made by two radiologists for the same lesion. In 
conttast, the per-patient frequencies are larger because they 
represent fractions of 104 lesions each interpreted by 10 
radiologists. A more clinically relevant frequency that cor- 
responds to two radiologists interpreting a patient's mammo- 
gram would be between the pairwise and the per-patient fre- 
quencies calculated here. 

Other CAD Observer Performance Studies 

Other mammography observer performance studies have 
found similar effects of CAD in improving diagnostic per- 
formance. Getty et al. performed one of the first of such 
studies (6). In this study, they developed a checklist that a 
radiologist would fill out as he or her interprets a mammo- 
gram. This checklist was intended to guide the radiologist to 
analyze the appearance of the lesion in a systematic way. By 
filling out this checklist, the radiologist would also have 

Cancer 
Benign 

Histograms showing tlie effect of 
cases alone. The residents had more frequent CAD on substantial disagreement in lesion 
substantial  disagreements   in  their  lesion management recommendations (biopsy vs. rou- 
management recommendations. Their pair- *^"^ foUow-up). Data shown are pairwise (top) 

^                     f-     ,   ^    ^- ,  j-                    » and per-patient (bottom) frequencies. Pairwise 
wise frequency of substantial disagreement ,    '^   .             ,   , . j ,       „    •     <■ ^        ■'                                      ° frequencies were calculated from all pairs of 
was 19% and their per-patient frequency was ^commendations made by two different radiol- 
51%. Use of the computer aid reduced these ogists. Per-patient frequencies were calculated 

All Benign All Benign 
Cancer Cancer 

Category 
from the total number of cases (104) in which 
the recommendations were made by multiple 
radiologists (n = 5 for attending radiologists, n 
= 5 for residents, and n = 10 for all readers). 
Black bars = unaided reading and white bars = 
computer-aided reading. (Reprinted with per- 
mission from (19).) 
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extracted lesion features from the mammogram. These 
lesion features were then analyzed and merged into an esti- 
mate of the probability of malignancy with an LD A classifi- 
er. They evaluated the combination of the checklist and the 
LDA classifier by comparing the reading performance of 6 
general radiologists who read 118 cases of mammograms 
containing breast lesions with and without the aid of the 
checklist and the LDA classifier (58 lesions were malignant). 
Both breast masses and clustered microcalcifications were 
included in the study. The average A^. value of the 6 gener- 
al radiologists reading the mammograms without the aid of 
the checklist and the LDA classifier was 0.83. Their average 
A^ value increased to 0.88 when their mammogram reading 
was enhanced by the checklist and the LDA classifier. This 
improvement in diagnostic performance was statistically sig- 
nificant. In addition, they also measured the diagnostic per- 
formance of 5 mammography specialists reading the same 
mammograms without the CAD enhancement. The special- 
ists achieved an average A^ value of 0.88. Therefore, they 
concluded that the computer aid helped general radiologists 
to perform at the level of mammography specialists. The 
disadvantage of this approach, however, is that it requires the 
radiologist to rate the lesion features interactively as input to 
the computer classifier. 

Chan et al. developed a computer technique that classifies 
breast masses as malignant or benign and evaluated this tech- 
nique in an observer performance study (7). They used a 
computer to extract texture-related image features of breast 
masses and an LDA classifier to calculate a relative malig- 
nancy rating of the lesion. Their observer performance study 
compared the ROC curves of 6 radiologists approved by the 
Mammography Quality Standard Act who reviewed 238 sin- 
gle-view mammograms with and without their computer aid. 
They found that use of the computer aid improved the radi- 
ologists' diagnostic performance. Their average A^ value 
increased from 0.87 to 0.91 in the single-view interpretation 
of the mammograms, and from 0.92 to 0.96 in the interpreta- 
tion of two-view mammograms. These improvements were 
statistically significant. Huo et al. evaluated in an observer 
performance study a different computer technique that clas- 
sifies breast masses as malignant or benign (22). Their com- 
puter technique employed computer-extracted image fea- 
tures of lesion morphology and an artificial neural network. 
They compared in the observer study the performance of 12 
radiologists with and without the computer aid and found 
significant improvement in performance when the computer 
aid was used (the average A^ increased from 0.93 to 0.96). 

Discussion 

Results of these observer performance studies show clearly 
and consistently that radiologists can improve their diagno- 
sis of malignant and benign breast lesions by using comput- 

er-aided diagnosis. By considering the computer-estimated 
likelihood of malignancy of the breast lesion, m a way simi- 
lar to consulting a fellow radiologist for a second opinion, 
the radiologist can potentially recommend more malignant 
lesions to biopsy while recommending fewer benign lesions 
to biopsy. The radiologist will operate on a higher ROC 
curve, and achieve greater diagnostic accuracy. In addition 
to this improvement in diagnostic performance, the radiolo- 
gist will potentially be more consistent in his or her diagnos- 
tic performance, with himself or herself over time, and with 
the performance of other fellow radiologists. The reduction 
of variability in radiologists' interpretation of mammograms 
will be an important added benefit to the improvement of the 
ROC curves. Both of these improvements can be achieved 
without havmg the patient going through an additional 
examination of another imaging modality and without addi- 
tional radiation exposure to the patient; these unprovements 
can be achieved from a better use of the information already 
recorded in a mammogram. 

We have focused our discussion of CAD in this report on the 
diagnosis of malignant and benign breast lesions. The clini- 
cal potential of CAD in mammography is not limited to this 
particular application. CAD methods have been developed 
to help radiologists detect subtle and early stage breast can- 
cers. Observer performance studies similar to those 
described in this report have been conducted and have 
demonstrated that these methods can help radiologists avoid 
missing subtle breast lesions (23,24). Some of these meth- 
ods are now available commercially and are being evaluated 
in clinical use (25). In addition, methods of computer analy- 
sis of mammographic breast density are being developed for 
analysis of the risk of developing breast cancer (26, 27). 
These methods promise to identify women at higher risk for 
developing breast cancer so that early cancer detection may 
be achieved through better surveillance. 

While much research has been done, CAD is still a relative- 
ly new concept clinically and it has just begun to enter clin- 
ical mammography practice. Over time, one expects to wit- 
ness the gains in diagnostic accuracy as indicated by the lab- 
oratory observer performance studies. The continuous 
improvement of current CAD techniques and the develop- 
ment of new computer techniques that target other aspects of 
breast imaging should also increase this gain in diagnostic 
accuracy over time. CAD could prove to be a powerful and 
indispensable tool for breast imaging where radiologists face 
high volume and extremely low cancer prevalence in a 
screening population that requires their constant vigilance, 
the challenge of detecting small and curable cancers and the 
challenge of distinguishing between malignant and benign 
lesions, and the need to merge information from mammo- 
gram, ultrasound, magnetic resonance imaging, nuclear 
medicine imaging, and patient clinical history. 
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Abstract. We compared Breast Imaging Report and Data System (BI-RADS) 
lesion descriptors provided by radiologists and image features extracted by a 
computer for computer classification of breast lesions as maUgnant or benign. 
Our results indicate that combining the BI-RADS lesion descriptors provided 
by radiologists and the computer-extracted image features produced the best 
computer classification performance. 

1.  Introduction 

We are developing computer-aided diagnosis (CAD) techniques to help 
radiologists more accurately diagnose suspicious malignant and benign breast lesions. 
Using only computer-extracted image features that we have developed previously, we 
have shown that our computer techniques can classify breast lesions as malignant or 
benign as accurately as or more accurately than radiologists [I, 2]. Another approach 
to computer classification of malignant and benign breast lesions is to use lesion 
descriptions provided by radiologists in terms of the standard lexicon of the Breast 
Imaging Report and Data System (BI-RADS) [3, 4]. The purpose of our present 
study was to compare these two approaches and to investigate whether it is beneficial 
to combine BI-RADS lesion descriptors provided by radiologists and computer- 
extracted image features for computer classification of malignant and benign breast 
lesions. 

2.  Materials and Methods 

The computer-extracted image features of suspicious breast lesions that we have 
developed previously are described in detail elsewhere. For masses, the computer- 
extracted image features include two features that characterize spiculations of a mass, 
margin sharpness of the mass, the density of the mass (average gray level), and 
texture [5].  For clustered microcalcifications, the computer-extracted image features 



include the number of microcalcifications within a cluster, the area of the cluster, the 
circularity of the cluster, the average area of the individual microcalcifications, the 
average volume of the individual microcalcifications where volume is defined as the 
product of area and contrast with contrast expressed in terms of a measurement of 
effective thickness, the relative standard deviation in microcalcification volume, the 
relative standard deviation in microcalcification effective thickness, and a 
microcalcification shape irregularity measure [6]. 

We used the lexicon of lesion descriptions defined in the 3"^ edition of BI-RADS 
(1998) [4]. For masses, the BI-RADS contains mass size (we implemented this 
descriptor into six categorical measurements from < 1 cm to > 5 cm in 1 cm 
intervals), 4 descriptors of mass shape, 5 descriptors of mass margin, and 4 
descriptors of mass density. Because it is often difficult to select one descriptor to 
represent accurately the entire margin of a mass, we instructed the radiologists to 
select up to two margin descriptors for each mass. For clustered microcalcifications, 
there are 5 descriptors for the distribution of microcalcifications, and 14 descriptors 
for the morphology of microcalcifications. Similar to the analysis of masses, because 
it is often difficult to select one morphology descriptor to represent accurately all 
microcalcifications in a cluster, we instructed the radiologists to select up to two 
morphological descriptors for each microcalcification cluster. In addition, we added 4 
categorical descriptors for the number of microcalcifications in a cluster: <5, 5-10, 
10-30, and >30. 

We used a database of 92 cases of mass lesions and 127 cases of clustered 
microcalcifications lesions in this study. The following analysis is on a subset of 
cases: 67 mass lesions (33 malignant) and 99 microcalcification lesions (42 
malignant). In all cases, 4 standard-view mammograms and magnification or spot- 
compression views of the lesion were available to the radiologists. The standard-view 
mammograms were digitized to a 100-micron pixel size and analyzed by the 
computer that extracted the image features. The computer did not analyze the 
magnification and spot-compression views. Two expert mammographers who are 
familiar with the BI-RADS standard participated in the study and each of them 
interpreted all the cases. 

The radiologists reviewed the mammograms in a similar fashion as in typical 
clinical practice where all mammograms of a given case were interpreted together 
based on which the radiologist reported an overall interpretation. The cases were 
presented in random order and no time limit was imposed on reading of the 
mammograms. The radiologists reported their impression either via a laptop 
computer or verbally to an assistant who recorded the data on the laptop computer. 
For each case, the radiologists reported on all relevant BI-RADS lesion descriptors for 
either a mass or a cluster of microcalcifications, the BI-RADS final assessment 
category, and a quasi-continuous estimate of the likelihood of malignancy. 

For the classification of masses, we used a Bayesian artificial neural network [7]. 
For the classification of clustered microcalcifications, we used the standard feed- 
forward error back propagation artificial neural network. These classifiers were 
designed to differentiate between malignant and benign breast lesions. Separate 
classifiers were designed that used the following as input: (1) the computer-extracted 



image features only, (2) the BI-RADS lesion descriptors provided by a radiologist 
only, and (3) the computer-extracted image features plus the BI-RADS lesion 
descriptors provided by a radiologist. In addition, separate classifiers were designed 
to use as input the BI-RADS lesion descriptors provided by each radiologist. Finally, 
separate classifiers were designed to classify masses and clustered microcalcifications 
as malignant or benign. Each classifier was trained and evaluated using the leave- 
one-out method. Area under the receiver operating characteristic (ROC) curve, A^, 
was used as a measure of the performance of the classifiers. 

3.  Results 

Table 1 shows a comparison of the A, values of the various computer classifiers 
described above and the A^ values achieved by the radiologists based on their own 
assessment of the lesions. 

Table 1. Summary A^ values of computer classification of malignant and benign breast masses 
or clustered microcalcifications in comparison to radiologists' assessment of the same lesions. 

Masses Microcalcifications 

Reader Reader A Reader B Reader A Reader B 

Computer-extracted image 
features only 

0.73 0.73 0.73 0.73 

BI-RADS descriptors only 0.88 0.87 0.48 0.72 

Computer-extracted image 
features p/Mi BI-RADS 0.96 0.89 0.75 0.81 

descriptors 

BI-RADS final assessment 0.88 0.92 0.60 0.61 

Estimate of likelihood of 
malignancy 

0.88 0.91 0.62 0.66 

4.  Discussion 

Computer classification of masses achieved higher A^ values based on the BI- 
RADS descriptors provided by radiologists than based on the computer-extracted 
image features. The opposite was true for computer classification of clustered 
microcalcifications: higher A^ values were obtained based on the computer-extracted 
image features.   The results do not show clearly whether computer classification 



based on the BI-RADS lesion descriptors provided by radiologists performed better 
than the radiologists' own assessments in terms of the BI-RADS final assessment 
categories. In general, the A^ values associated with the classification of masses by 
either the computer or the radiologists were higher than the corresponding A^ values 
for the classification of clustered microcalcifications. 

The results indicate that combining the computer-extracted image features and the 
BI-RADS lesion descriptors provided by the radiologists produced the highest A^ 
values in the classification of both masses and clustered microcalcifications. The 
combined results were better than results from the computer-extracted image features 
alone and from the BI-RADS lesion descriptors provided by the radiologists alone. 

There is considerable amount of variabiUty in the A^ values based on the BI-RADS 
lesion descriptors provided by each of the two radiologists. This variabihty is not 
unexpected [8, 9]. However, given this variabiUty, we need to collect BI-RADS data 
from additional expert radiologists and to investigate the effect of this variability on 
the computer classification of malignant and benign breast lesions. 
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Comparison of Student's t-Test and the Dorfman-Berbaum-Metz 
(DBM) Method for the Statistical Comparison of Competing 

Diagnostic Modalities 

Yulei Jiang, Department of Radiology, The University of Chicago, Chicago, IL 60637 

ABSTRACT 

Both Student's t-test for paired data and the Dorfman-Berbaum-Metz (DBM) method report a P value in comparing ROC 
curves of competing diagnostic modalities. We empirically compared the P values from the t-test and the DBM method 
using data of two observer studies involving lung-nodule detection (15 readers 240 cases) and breast-lesion classification 
(10 readers 104 cases). We made 596,637 comparisons based on data drawn fi-om different combinations and subsets of 
the readers and cases. The average difference in the P values was 0.11 and 0.058 in the lung nodule study (of two 
separate analyses) and 0.0061 in the breast lesion study. The lung nodule study showed, in the analysis that 
demonstrated statistical significance with the original full dataset, both P < 0.05 or both P > 0.05 in 83% of the 
comparisons. The t-test alone reported P < 0.05 in 17%, and the DBM method alone reported P < 0.05 in 1% of the 
comparisons. A second analysis of the part of the lung nodule study that did not show statistical significance with the 
original full dataset found both P < 0.05 or both P > 0.05 in 99% of the comparisons. The t-test alone reported P < 0.05 
in 1%, and the DBM method alone reported P < 0.05 in less than 1% of the comparisons. The breast lesion study 
showed both P < 0.05 or both P > 0.05 in 91% of the comparisons. The t-test alone reported P < 0.05 in 5%, and the 
DBM method alone reported P < 0.05 in 4% of the comparisons. These results indicate that the t-test and the DBM 
method generally report similar P values, but their conclusions regarding statistical significance often differ and the 
DBM method should be used because it accounts for both reader and case variances. 

Keywords: ROC analysis, statistical test, computer-aided diagnosis 

1.   INTRODUCTION 
2 

Both the Student's t-test' for paired data and the Dorfinan-Berbaum-Metz (DBM) method of jackknifing and ANOVA 
can be—and have been—used to compare the diagnostic performance of competing diagnostic modalities. For example, 
several studies have compared the conventional film interpretation to computer-aided film reading or computer-aided 
diagnosis (CAD). The area under the ROC curve, Az^, is commonly used as a summary index of diagnostic performance, 
but other indices of diagnostic performance can also be used. In a typical observer study, the A^ value is estimated from 
a group of multiple readers who interpret a set of multiple cases. Both the t-test and the DBM method report a P value 
for the differences in the A^ values of the two modalities. In these experiments, because both the cases and the readers 
are random samples, the total variance of the A^ values will include a case and a reader variance component (plus 
interactions^' '*). Therefore, the P value should account for both the case variance and the reader variance. To apply the 
Student's t-test, however, one must first reduce the data by calculating an A^ value for each reader and for each modality. 
By doing so. Student's t-test for paired data cannot account for case variance in its calculation of the P value. Therefore, 
stricriy speaking, the statistical inference of the t-test is valid only for the particular set of study cases . This implies 
serious limitations for studies that employ Stiident's t-test as the method of statistical analysis. The DBM method, on the 
other hand, takes both case variance and reader variance into account in its calculation of the P value and, therefore, its 
statistical inference is considered valid for the population of cases and the population of readers that are represented by 
the study^. The purpose of the present work is to empirically compare the results of the t-test and the DBM method to 
substantiate these theoretical considerations. 



2.   DATASETS 

We used two observer study datasets In this empirical comparison of the t-test and the DBM method. The first dataset 
was that of Freedman et al^ This observer study compared radiologists' performance in the detection of solitary lung 
nodules in plain chest radiographs with and without computer-aided detection. The study consisted of 240 cases (80 
abnormal and 160 normal) and 15 radiologist observers. Each observer read all cases three times: first without the 
computer aid, then after a sufficiently long period of time again without the computer aid and, immediately after reading 
each case, re-reading of the same case with the computer aid. We call these three reading conditions the independent 
unaided reading, sequential unaided reading, and computer-aided reading conditions, respectively. The study showed 
statistically significant improvements in the average A^ values of the radiologists from the two unaided reading 
conditions to the computer-aided reading condition (P = 0.0058 and P < 0.0001). In addition, the study did not find the 
difference in the average Az values between the independent unaided reading and the sequential unaided reading 
conditions to be statistically significant (P = 0.6). 

The second dataset was that of Jiang et al^ The purpose of this observer study was to compare radiologists' 
performance in the diagnosis of malignant and benign clustered microcalcifications in mammograms with and without 
the aid of a computer technique that provided an estimate of the lesions' likelihood of malignancy. This study consisted 
of 104 cases (46 malignant and 58 benign) and 10 radiologist observers. Each observer read all cases twice, once 
without the computer aid and once with the computer aid. A counterbalanced design was used to determine the 
sequence in which the observers read the mammograms, as described in detail elsewhere*. The study found statistically 
significant improvement in the average A^ values between the unaided reading and the computer-aided reading 

conditions (P < 0.0001). 

3.   METHODS OF COMPARISON 

To compare the t-test and the DBM method, we applied both methods to the same ROC dataset and compared the A^ 
values and the P values calculated by the two methods. To apply the t-test, we first applied the LABR0C4 algorithm'' to 
the data of an individual reader to obtain a maximum-likelihood fit of the data to the univariate binormal model and to 
obtain an estimate of the Az value. We then used the t-test to evaluate the difference in the means of the A^ values of the 
two reading conditions using data from a group of readers. The mean Az values of the two reading conditions and the P 
value reported by the t-test were recorded. The DBM method was applied as described elsewhere^. The ROC data of 
the group of readers under both reading conditions were used as input to the DBM method simultaneously. The average 
Az values of the two reading conditions and the P value associated with the difference in the average Az values of the 
two reading conditions were recorded. These recorded Az values and P values fi-om the t-test and from the DBM method 

were then compared. 

To compare the t-test and the DBM method meaningfully, we applied the two methods on a large number of ROC 
datasets. These ROC datasets were derived from the two observer study datasets as described below. (1) The two 
observe study datasets included 15 and 10 readers, respectively. Froiri these full datasets, we obtained data of subsets of 
readers that consisted of 2-15 readers and 2-10 readers respectively for each study. With a fixed number of readers, 
different groups of readers can be drawn from the larger pools of readers; we obtained ROC data for each of these 
groups of readers by performing combination analysis. (2) The two observer study datasets consisted of 240 and 104 
cases, respectively. From these full sets of cases, we obtained six subsets of cases from the Freedman et al. study dataset 
with the total numbers of cases of 177, 178, 185, 198, 222, and 240 in each subset (the last subset was the fiiU case set). 
The number of normal cases was 160 in all six case subsets. These case subsets were defined in the original study for 
the purpose of analyzing diagnostic performance of cases of some particular characteristics. But for our present purpose, 
the details of the characteristics of these case subsets are not important and it suffices to note that the numbers of cases 
were different among the cases subsets but the individual case in each case subset was held fixed. From the Jiang et al. 
study dataset, we obtained 201 case subsets. These consisted of 100 randomly selected case subsets of 90 cases (45 
malignant, 45 benign), 100 randomly selected case subsets of 50 cases (25 malignant, 25 benign), and the frill set of 



cases of 104 cases (46 malignant, 58 benign). (3) The Freedman et al. study included data of the independent unaided 
reading and the sequential unaided reading conditions. Comparison of these two reading conditions in the original paper 
did not show statistical significance. Therefore, this dataset had different statistical conclusion from the other two 
datasets that compared unaided reading and computer-aided reading conditions. This dataset was therefore included in 
our present work. The combination of the above three approaches yielded a total of 393,024 ROC datasets from the 
Freedman et al. study and 203,613 ROC datasets from the Jiang, et al. study. Our comparison of the t-test and the DBM 
method was then based on all of these ROC datasets. 

4.   RESULTS 

The Az values calculated by the t-test and by the DBM method were numerically similar. The absolute value of the 
average difference in the A^ values between that calculated by the t-test and that calculated by the DBM method was 
0.0024 in the analysis of the Freedman et al. study dataset that showed statistical significance with the full dataset, 
0.0018 in the analysis of the Freedman et al. study dataset that did not show statistical significance with the full dataset, 
and 0.0033 in the analysis of the Jiang et al. study dataset. Figure 1 shows a histogram of the difference in the A^ values 
calculated by the two methods. 

The P values calculated by the t-test and by the DBM method were similar, on average, but with considerably large 
differences in some instances. The absolute value of the average difference in the P values calculated by the t-test and 
by the DBM method was 0.107 in the analysis of the Freedman et al. study dataset that showed statistical significance 
with the fiiU dataset, 0.058 in the analysis of the Freedman et al. study dataset that did not show statistical significance 
with the fiill dataset, and 0.0061 in the analysis of the Jiang et al. study dataset. The median differences were closer to 
zero in all three analyses, but the range in these differences exceeded 0.2 in both the positive and negative directions. 
Figure 2 shows a histogram of the differences in the P values calculated by the two methods. 

There were both agreements and disagreements between the t-test and the DBM method regarding statistical significance 
based on the calculated P values.  In the analysis of the Freedman et al. study that demonstrated statistical significance 
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Figure 1. Histograms of the differences between the A^ values computed by the Student's t-test for 
paired data and by the DBM method. SD = significant difference in the original full dataset. NS = not 
significant in the original full dataset. 
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Figure 2. Histograms of the differences between the P values computed by the Student's t-test for 
paired data and by the DBM method. SD = significant difference in the original full dataset. NS = not 
significant in the original full dataset. 
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Figure 3. Frequency of disagreement between the t-test and the DBM method in reporting statistically 
significance at the a = 0.01 level as a function of the number of readers. The denominator, which is 
not a constant, is the number of ROC datasets with a fixed number of readers and with both the 
individual reader and the number of cases being variable. SD = significant difference in the original 
full dataset. NS = not significant in the original full dataset. 



with the full dataset, both the t-test and the DBM method reported P < 0.05 for 27% of the ROC datasets and neither 
method reported P < 0.05 for 56% of the ROC datasets. The t-test alone reported P < 0.05 for 17% and the DBM 
method alone reported P < 0.05 for 1% of the ROC datasets. In the second analysis of the Freedman et al. study that did 
not show statistical significance with the full dataset, both the t-test and the DBM method reported P < 0.05 for less than 
1%, neither method reported P < 0.05 for 99%, the t-test alone reported P < 0.05 for 1%, and the DBM method alone 
reported P < 0.05 for less than 1% of the ROC datasets. Finally, in the analysis of the Jiang et al. study, both the t-test 
and the DBM method reported P < 0.05 for 81%, neither method reported P < 0.05 for 10%, the t-test alone reported P < 
0.05 for 5%, and the DBM method alone reported P < 0.05 for 4% of the ROC datasets. 

The discrepancy between the t-test and the DBM method in statistical significance depended on the number of readers 
(Fig. 3). With small numbers of readers, the t-test tended to fail to find statistical significance that was found by the 
DBM method. However, with large numbers of readers, the t-test had a tendency to find statistical significance that was 
not found by the DBM method. 

5.   SUMMARY 

We compared Student's t-test for paired data and the DBM method in multiple-reader and multiple-case ROC analysis of 
competing diagnostic modalities using data drawn from two observer studies. A large number of comparisons were 
made between the t-test and the DBM method. Results show that the two methods report numerically similar A^ values 
and often report similar P values. However, the two methods also often come to different conclusions of statistical 
significance depending on the study, the number of readers, etc. Because the DBM method takes both reader variance 
and case variance into account, and because the t-test takes only reader variance into account, statistical comparisons of 
diagnostic modalities should be performed using the DBM method (or other similar methods). 
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